
Secure Similarity Based Document Retrieval System

in Cloud
Greeshma N. Gopal, Mahendra Pratap Singh

Department of Computer Science, National Institute of Technology,Surathkal,India

greeshmang@gmail.com

mahoo15@gmail.com

Abstract— The introduction of Cloud computing concept has

been instrumental in reducing resource unavailability in cyber

world. Privacy of data stored in cloud resources though is a

debatable subject and a matter of concern. As the number of

documents stored on cloud resources increase, a search engine

will have to be employed to search for information. Due to

increased concern on these search engines itself misusing data,

users are apprehensive about treating cloud resources as a data

storage medium. Through this project we try to improve the

security in cloud computing by introducing encryption of count

list, as well as documents. The search is performed with the

hashed keywords. Limitations in cloud computing are addressed

by maximizing the utilization of cloud computing resources.

Keywords— privacy, cloud, fully homomorphic encryption,

similarity based retrieval, keyword search.

I. INTRODUCTION

 The technology that provides unlimited storage and

openness on how to store data in cloud has brought good

cheer to technicians across the world. But the unpredictability

of where the data is stored and it being on a public network

has made people to shy away from using cloud. Storing

personal information and other documents, worries

technicians, mainly due to the following reasons,

1)Uncertainty on whether the data is available on the remote

location 2) whether the data is securely stored without any

intrusion from unwanted external sources. These are stopping

users from storing private and confidential documents in

cloud.

 Encrypting the document was the common method to hide

the documents from a curious third party or server. But when

the number of documents increases, it will be difficult for the

owner to keep track of all the documents that have been

uploaded. Otherwise owner should download the encrypted

document, decrypt it and then check whether it is the

indented one. If not, then owner must repeat the same

procedures with another encrypted file. In such a situation

user always wish for a search system that allows him for fast

retrieval of the documents.

 ‘Privacy-Preserving Multi-keyword Ranked Search over

Encrypted Cloud Data’ [3] is using Similarity calculation to

find the match between a particular document and the given

keywords. They are generating a trapdoor corresponding to

the keywords given and this is used to find the match in

encrypted keywords. The secret key which is known only to

the owner cannot be shared to a person who wishes to access

the document is a major problem in this technique. It is also

clear that when the random factor s increases, in the trapdoor

generation the accuracy of the search results decreases in this

method.

 In the method ‘An Efficient Privacy Preserving Keyword

Search Scheme in Cloud Computing’ [4] it enable user to

send a trapdoor for a certain keyword which is encrypted

under his private key to Server, which will enable Server to

find out all emails containing the keywords, but learns

nothing else. Server then participates in the partial

decipherment to calculate an intermediate result of the

decipherment using its private key before returning the

relevant encrypted emails back. Here they are considering the

high computing capability of cloud environment, but it also

lacks a ranking system that give burden to the user when the

number of documents increases. Moreover the private key of

the user is required to be shared if anyone other than owner

needs to do a search on these documents.

 Consider the following scenario in which hospitals are

planning to keep electronic health records, since it provides

several advantages especially to patients in terms of cost

better care etc. It also provides an opportunity to the

researchers all over in the medical field to access these

documents to study about a particular disease, how the

treatment is working on the patient. So the advantages of

implementing electronic health records is pretty clear but

people still worry about their privacy and security when the

documents showing their ailment is outsourced to a public

network which is a cloud, where we don’t know exactly who

is exactly providing the resources. The need for a secure

system is so obvious that, we need to make things fast and

efficient, while at the same time it should not add trouble to

anyone’s life.

 Here we put forward the design for a secure, sharable,

similarity based ranked document retrieval system that takes

advantage of vast storage, immense computing power, and

parallel computing facilities in a cloud environment.

II. PROBLEM STATEMENT

A. System Model
Here in this model we have four entities Document

Owner O, Document User U, Cloud Server C and

Document Manager DM. Owner has a set of documents D

978-1-4673-2149-5/12/$31.00 ©2012 IEEE 154

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 16,2021 at 04:34:44 UTC from IEEE Xplore. Restrictions apply.

that is to be outsourced to cloud storage. The owner or user

needs to securely retrieve these documents in future without

any difficulty even if the number of documents increases in

future. The Cloud server is running a search system in

which for a set of keywords, the user or owner whoever be

the retriever must get most relevant documents ranked

according to their similarity score with the keywords. The

system is modeled to utilize all the benefits of cloud

parallelism by setting up a set of virtual machines VM, in

the data hosts provided by the Cloud. The Data Center

Broker distributes the task of finding match between the

encrypted Query Words QK and the Keywords K.

B. Privacy and security issues.

Adversary knowing keywords and search results

Adversary can study the behavior of a user by knowing

his search pattern. The adversary can obtain satisfactory

results about the investigation about a person if he could get

the users search results.

Cloud Server learning keywords and search results.

An honest but curious server may create headache to the

users if he could get to know the search pattern of a fellow,

by studying the keywords, search results or document itself.

Threat through a Known Cipher text

The server or an adversary can get only encrypted

keywords from the search query or in the index list.

Threat due to known background

The cloud server can study the keywords in a document

by using statistical information like keyword frequency or

document frequency.

C. Notations

D – The plaintext document collection, denoted as a set

 of m data documents D = (D1,D2,….., Dm).

 C – The encrypted document collection stored in cloud

 server, denoted as C = (C1,C2,…..,Cm).

K – The distinct keywords extracted from document

 collection D, denoted as K= (K1,K2,….,Kn).

QK – The subset of K, representing the keywords in a

 search request, denoted as QK= (QK1,QK2,…..,QKt).

S – the Similarity score of the query keyword with the

keywords in the list , denoted as S = (S1,S2,…..,Sn).

SP – top p Similarity scores, denoted as SP=(S1,S2,…..,Sp).

D. Preliminaries

Fully Homomorphic Encryption

The system is designed in such a way that it can use

Gentry’s Fully Homomorphic encryption [1], which allows

computation with encrypted data. A homomorphic encryption

technique ensures that if we are decrypting that computed

data which is again in the encrypted format, will give us the

result which is same as computing with the plain text.

Key Gen(): The secret key and public key is generated in this

phase. We have to generate a set of rational numbers (r1…..rt)

in the range [0,2) such that there is a sparse subset S that

will sum up to 1/p

 !"
"#$
% &'

This sparse subset is kept as secret key and is only known to

the owner. The subset is represented as a bit vector .If i
th

 bit

of that bit vector is 0 then ri is not an element of the sparse

subset. If that bit is 1 the element ri is a part of the sparse

subset. Publishing this bit vector will not negotiate with the

security of the system, since the sparse subset sum is known

to be a hard problem.

Enc(): For encryption we have to sample p. Here we are

generating distributions say some integers (x0…..xt). These

integers are of length bit. When we form the cipher text we

select a random subset of integer say s ! (x0…..xt) and also a

random integer r which is of bits .Then

 c = [m + 2r + 2 " xi]

After encryption we have to find the mod N of that integer, to

keep value small .Then we to multiply the cipher text with

the rational numbers(r1…..rt).Before doing this operation the

binary of the integer c and also of the rational values are

taken. We have to perform binary multiplication here. This is

the post processing after each encryption that helps the

decryption faster.

 (((((((()"(((% *(+(!" for all " # ,

So along with the cipher text we need to store values.

Dec():During the decryption , the owner must use the secret

key which is in the form of bit vector. We have to multiply

each values with the corresponding bit vector. This will

finally give the product of the relevant rational numbers that

sum up to 1/p and the cipher text. Summing up these values

will give -*'. which is required.

Similarity based document retrieval

Similarity based document retrieval [6] has an added

advantage that the documents are ranked during when a

match is found with a given query and the document. The

similarity score is calculated by finding the cosine angle

between the query vector and the TFIDF matrix. TF means

term frequency and IDF is Inverse document frequency. This

matrix is generated based on the document frequency and the

keyword frequency in that document. Query vector contains

as much rows as of the number of keywords and a single

column. The weight in TFIDF matrix uses tmax as maximum

term frequency in a document, N as number of documents in

a collection and n as number of documents containing a

query term, to calculate the weights in TFIDF as

/ % 01 2 345 % 01 2 6789: ; <= ><

2012 International Conference on Data Science & Engineering (ICDSE) 155

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 16,2021 at 04:34:44 UTC from IEEE Xplore. Restrictions apply.

III. SECURE SIMILARITY BASED DOCUMENT RETRIEVAL

SYSTEM ARCHITECTURE IN CLOUD

A. Document Upload by Owner

Fig.1 shows how Document upload process takes place.

The owner O of the documents has to upload the encrypted

documents, as well as the count list to the Cloud server. The

owner first extracts the keywords in each document and

makes a keyword list to generate the count list. Before

outsourcing this index to the cloud, the Owner generates the

hash of the keywords which represent the row identifier of

the matrix.

Fig. 1 Documents upload by owner

This encryption of count list is done using Fully

Homomorphic Encryption. Random values that are generated

by owner form the column identifier. The encrypted count

list is then outsourced to the search engine module of the

cloud. The documents is encrypted using a Symmetric key

encryption technique AES and is outsourced to the cloud

Server to be stored in the cloud storage.

B. Document Search by Owner/User

During a search either, by user or by owner, the keywords

in the Query (QW1,……..QWt) is first hashed before sending

it to server. The Data Center Broker in the Cloud takes these

hashed keywords and find whether it is matching with

existing hashed keywords K1,K2,….,Kn.

The count list is kept in the form of a linked list as shown in

the figure Fig. 2. which has two entities in each node. The

first entity is Document Id and the second entity is the count

of the keyword in that document. The keywords form the

header of the linked list.

Fig. 2. Structure of count list

 In this scheme only the relevant document vectors are

kept. But this scheme will not help to provide the complete

privacy at the server side. Privacy to the keywords is already

given during the query as well as at the server side with

hashing technique. But we could not guarantee a situation

that server itself enacts as user and perform a search for a

known keyword. In this case server is curious to know the

contents of the documents uploaded. If the given keyword is

matched with the existing hashed keyword list then the count

list will show all the relevant documents connected to that

keyword. So to avoid this privacy breach we have to make

count list that holds the value of all the documents in the

server or a set of n documents in the server, so that it is

difficult for the server to deduce the mapping of a keyword to

the document. Here irrelevant documents are included to the

list which has document value equal to zero, but server could

not know that it is irrelevant because the values are encrypted.

The modified count list is shown in Fig. 3.

Fig. 3. Modified count list

 To keep the privacy with the server the document ids are

also encrypted using a commutative encryption key of the

Document Manager, DM. The count list is finally kept as

shown in figure Fig. 4.

Fig. 4. Encrypted count list in serve

During the search if a match is found with the query

keywords and the existing keywords then that count list

corresponding to a keyword is selected for the similarity

calculation. The selected count list is provided to the Virtual

(VM1……..VMc).

MD5 hashing of

keywords

Fully

Homomorphic

encryption of count

values

Generate count

matrix

Keyword extractor

Document

Encryption

using AES

Index generated with

encrypted count values

and hashed keywords

Search Engine

2012 International Conference on Data Science & Engineering (ICDSE) 156

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 16,2021 at 04:34:44 UTC from IEEE Xplore. Restrictions apply.

 This job division allows parallel execution in these Virtual

Machines located in Data Hosts. The distribution of their job

depends on the factor f= qk*n/c, where n is the total number

of files in the index list, qk is the number of query keywords

and c is the number of virtual machines available. This work

distribution can effectively reduce the time taken for the

computation over Fully Homomorphically encrypted data.

The Similarity Scores of the relevant document

S=(S1…………Sn) is calculated from the encrypted count

values in the count list. The documents are ranked according

to this relevance score to a subset SP= (S1………..Sp) as the

first p relevant document ids is given to the user. Fig.5.

illustrates the design of the complete search system.

 Fig. 5. Documents search by owner/user

IV. SIMULATION OF THE MODEL IN CLOUDSIM

A) CloudSim Toolkit

Evaluating the performance of Cloud provisioning policies,

application workload models, and resources performance

models in a repeatable manner under varying system and user

configurations and requirements is difficult to achieve. To

overcome this challenge, Rajkumar Buyya (Rajkumar Buyya

et al. 2009) [7] proposes CloudSim: an extensible simulation

toolkit that enables modeling and simulation of Cloud

computing systems and application provisioning

environments. The CloudSim toolkit supports both system

and behavior modeling of Cloud system components such as

datacenters, virtual machines (VMs) and resource

provisioning policies. It implements generic application

provisioning techniques that can be extended with ease and

limited efforts.

B) CloudSim Extension

The existing CloudSim toolkit have been extended to

support the user task as part of Cloudlet execution by

extending DataCenter class. The user task is parallelly

executing in the given working environment by using

Executor class in Java.

C) Implementation details

The simulation environment was setup with Intel Dual

Core processor with a speed of 2 GHz, and a 2 GB RAM. A

single Datacenter with 20 Virtual machines, each executing

one cloudlet was generated. The virtual machines are running

on two processors as the Datahosts.

V. RESULTS

A) Meeting privacy and security issues

1) Query keywords privacy and security

The keywords provided from the user as the query is always

hashed and matching is done against the hashed keywords in

the server side. Here a curious server or a third party is

unable to find the keywords provided by the user, since

obtaining plain text from the hashed keyword is difficult. In

an application which demands high security of these

keywords can be kept encrypted and each time different

instance of hashed keywords can be generated.

2) Privacy and security of the result set

The count list is kept in the encrypted form. The similarity

computation is done with this encrypted values and the

decryption of the result is done only at the user side. So the

 Server setup in

Server Setup in Cloud

VM-

Similarity

calculation

Broker- distributing the

encrypted values

VM-

Similarity
calculation VM-

Similarity

calculation

Get the
relevant

ids by

removing

user key.

MD5

hashing the
query

keywords

Select the
relevant

document ids

< (id, DMkey))>

from the sorted

similarity list.

Selecting the
relevant count list.

Find match within

hashed key list.

Sending calculated
similarity scores in

the encrypted form

after sorting.

Document Manager

Document Manager removing

key on Document ids

 < (id, Ukey)>

Encrypt ids again

using user key

< ((id, DMkey), Ukey)>

2012 International Conference on Data Science & Engineering (ICDSE) 157

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 16,2021 at 04:34:44 UTC from IEEE Xplore. Restrictions apply.

adversary or server itself is unable to deduce the set of

documents queried by the user.

3) Privacy and security during the update operation

During the update operation all the nodes of count list

corresponding to a particular keyword is updated. That means

server has to add a set of n values to the existing list which

are in the homomorphically encrypted form. This value can

be either zero or greater than zero depending upon the

document. But server could not know which node has been

updated, from the encrypted data. It is to be noted that even

though a comparison can be performed by the server on

existing encrypted list to check whether it is zero or not the

plain text result can be obtained only when secret key is there

with the server.

The encryption key of FHE contains a hint about the secret

key p. But this key is semantically secure, unless either it is

easy to break the semantic security of encryption, or the

following sparse subset sum problem (SSSP) is easy: given α

set of β numbers Y and another number s, find the sparse (α-

element) subset of Y whose sum is s. The SSSP has been

studied before in connection with server-aided cryptosystems.

If α and β are set appropriately, the SSSP is a hard problem,

as far as we know. In particular, if we set a to be about !(bit

length of the key), it is hard to find the sparse subset by

“brute force,” since there are ?@AB possibilities.

B) Performance improvement obtained

It is found that even though encrypted keyword matching

based on Fully Homomorphic Encryption is taking too much

time to produce the result, the parallel processing facilities

available in the cloud environment can improve the

performance of this search system ! times where ! is the

number of Datahosts available.

TABLE I

PERFORMANCE OBTAINED

The search system is selecting only the matching count list

for similarity calculation. The performance of the system

directly depends on the number of bits involved during

search process. When number of query keywords increases

number of bits also increases. The application is run without

cloud and found that the execution in cloud environment can

give better performance and the high computational

complexity of fully homomorphic encryption have been

considerably reduced.

Fig.6.Performance Graph

In addition to that here care is taken to provide only a limited

set of values for the computation, without compensating with

the privacy. We have considered 7 to 56 files to evaluate the

performance of the system. The performance improvement

graph obtained from the table TABLE 1 is shown in Fig.6.

Finally the sorted document list is provided to the user. Not

that user or even server could not see the similarity score in

plain text unless they have the secret key of the fully

homomorphic system. The user selects first p document ids

of top p similarity scores SP=(S1,S2,…..,Sp) which is kept

encrypted by Document Manager’s key DMkey .This is again

encrypted by User with the User Key Ukey and send to the

Document Manger. Document Manager removes his key and

send the ids back to user. User upon removing Ukey will get

the relevant ids in plain text.

VI. CONCLUSIONS

In this paper we introduced a secure storage system

suitable for a cloud computing environment. The keyword

search is performed by doing computation on index

keywords that is kept encrypted using Fully Homomorphic

Encryption. The search keywords and search results are in

encrypted format during the whole network communication.

The index list keywords are also encrypted to keep the data

secure from honest but curious cloud. The system utilizes the

immense resources of cloud computing to overcome the

performance issue addressed by fully homomorphic

encryption.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 20 40 60

T
im

e
 i

n
 M

il
li

se
c
o
n

d
s

No: of files

Performance obtained in Cloud

In Cloud Setup

Without Cloud

No: of bits in count list
No: of

files

With

Cloud
Without Cloud

48 7 2256 24820

96 14 3323 36910

192 28 9017 42619

384 56 16287 67797

Document Similarity

D3 e(1.9459101490553132)

D1 e(0.5596157879354227)

D2 e(0.5596157879354227)

D0 e(0.0000000000000000)

D4 e(0.0000000000000000)

D5 e(0.0000000000000000)

D6 e(0.0000000000000000)

2012 International Conference on Data Science & Engineering (ICDSE) 158

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 16,2021 at 04:34:44 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Marten van Dijk, Craig Gentry, Shai Halevi and Vinod
Vaikuntanathan,"Fully Homomorphic Encryption over the Integers.".

In Advances in Cryptography - EUROCRYPT'10, LNCS vol. 6110,

pages 24-43, Springer, 2010.
[2] Craig Gentry, “Computing arbitrary functions of encrypted data.”

Commun. ACM 53(3): 97-105 (2010)

[3] Ning Cao, Cong Wang, Ming Li, Kui Ren, Wenjing Lou, "Privacy-
preserving multi-keyword ranked search over encrypted cloud data,"

INFOCOM, 2011 Proceedings IEEE , vol., no., pp.829-837, 10-15

[4] April 2011
[5] Qin Liu,Guojun Wang, Jie Wu, "An Efficient Privacy Preserving

Keyword Search Scheme in Cloud Computing," Computational

Science and Engineering, 2009. CSE '09. International Conference on ,
vol.2, no., pp.715-720, 29-31

[6] http://www.afn.org/~afn21533/keyexchg.htm

[7] Hweehwa Pang, Jialie Shen, and Ramayya Krishnan.”Privacy-
preserving similarity-based text retrieval. “ACM Trans. Internet

Technol. 10, 1, Article 4 (February 2010), 39 pages

[8] Buyya, R., Ranjan, R., Calheiros, R.N,’Modeling and Simulation of
Scalable Cloud Computing Environments and the CloudSim Toolkit:

Challenges and Opportunities. “ University of Melbourne, Australia

(July 2009)

2012 International Conference on Data Science & Engineering (ICDSE) 159

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 16,2021 at 04:34:44 UTC from IEEE Xplore. Restrictions apply.

