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Abstract—Epilepsy is a pathological condition characterized
by spontaneous, unforeseeable occurrence of seizures, during
which the perception or behaviour of a person is altered, if
not disturbed. In prediction of occurance of seizures, better
classification accuracies have been reported with the use of non
linear features and hence they have been estimated from wavelet
transformed Electro Encephalo Graph (EEG) data and used to
train k Nearest Neighbour (kNN) classifier to classify the EEG
into normal, background and epileptic classes. Very good accuracy
performance of nearly 100% has been reported from the current
work.
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I. INTRODUCTION

A scheme for predicting the occurrence of seizures of
epilepsy patients would help not only the patients from a
potentially risky situation but also observers or onlookers to
take precautions regarding patient safety. Most of the studies
documenting methods for epilepsy detection have focused on
better accuracies in classifying seizure or the ictal phase from
the rest of the EEG recording rather than tapping character-
istic features extracted from the EEG that are predictive of
impending seizure(s). Thus the study was mainly geared for
segregating a background epileptic state or the aura phase
indicative of impending seizures from the EEG with as high
accuracy as possible.

Proper diagnosis for epilepsy via gold standards necessi-
tate the use of expensive imaging techniques as functional
Magnetic Resonance Imaging (fMRI) to pinpoint the focii of
epilepsy. With advances in computing speeds and power, it is
now possible to not only judge patient condition objectively
but also automate diagnostical decisions. The authors propose
a scheme where in a classifier discriminates based on the
features estimated from the detail coefficients of the wavelet
decomposition of the data.

Epileptiform EEG

More often than not time series analysis of the signal is
relied upon which fail in detecting significant characteristics

that may be recorded in a different domain. The need for
automation in EEG monitoring for seizure prediction and
detection is imperative to manage the condition and to mitigate
ambiguity brought in by human errors and observations,
however skilled or otherwise [1]. It may also be noted that
not all epilepsies present epileptiform EEGs, hence the scope
for human error increases.
Distinguishing seizure signals from common artifacts is not
very difcult as they are prominent spiky but repetitive in
nature, whereas most other artifacts are transients or noise-
like in shape. The ictal wave patterns, appear with the onset
of epilepsy. Spikes have a high correlation with seizure occur-
rence and are usually of 10 - 80 ms duration. They are often
followed by slow waves usually occuring at 3 Hz or lesser
frequencies. The background epileptic state encompasses pre-
ictal or interictal phases that occur prior to the onset of siezures
and is often called as the auraindicative of impending seizure.
Fig. 1 shows plots of Normal, Pre-Ictal and Ictal EEG of 5
seconds duration.
Schemes for epilepsy detection are briefly discussed:

Spectral analysis: Peaks in the Power Spectrum at specific
frequencies may be used to identify epileptic seizures. Estimat-
ing the power spectrum may be carried out nonparametrically
using the Fourier transform of the estimate of the autocorre-
lation or by the parametric approach that uses a model for the
same[2].
Local variance: The signal is tessellated into rectangular
windows and variances in each segments are compared with a
common threshold, if greater than the threshold, the segment
is has a seizure record else, is normal [3]. Thresholds may be
computed adaptively rather than being a fixed entity[4].
Transform domain Analysis: Although any orthogonal trans-
form can be used, wavelets are gaining faster and newer
grounds in recent times with good results reported. In [5] EEG
was analysed with 5 level decomposition using Daubechies 4
wavelet filter and classified using neural networks with the
energy of details and approximations being the input features.
In [4], variances and standard deviation of wavelet detail
coefficients have been used for epilepsy detection.
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Fig. 1: Typical Plots of Normal Interictal & Ictal EEG taken for a duration of 5 s along with their PSD’s in second row.

Nonlinear measures: Nonlinear measures like Correlation
Dimensions (CD), Largest Lyapunov exponents (LLE), en-
tropies, help to understand the EEG dynamics and underlying
chaos in the brain [6]. In [7], CD was used to characterize the
background epileptic EEG for seizure prediction. On compar-
ison non linear measures fare better than spectral analysis.
Seizure detection performance of various entropy measures
tested in [8] and entropy values computed for the epileptic
EEG were found to be lower compared to the values computed
for the normal EEG. It has also been reported that EEG data
during seizure activity has significant non linearity despite
which, it is more predictable than seizure free intervals that
resemble Gaussian linear stochastic processes, as expressed in
[9].

II. PROPOSED METHOD

Fig. 2: The Proposed method

The approach is as illustrated in Fig. 2. The EEG data used
in this research have been made available at the site [10] with
details at [7].

A. Discrete Wavelet transform (DWT)

Multiresolution analysis of a signal through DWT enables
one to analyse data with different levels of detail at different
scales of decomposition. Transforming the signal into the
DWT domain needs the data to be sampled first. Choosing a
higher sampling frequency increases the computational com-
plexity, given by Mallats algorithm [11] : O(2dnk) where : d
- depth of decomposition, n - number points in the data and
k - number of filter coefficients. It is interesting to note that

higher number of decomposition levels and higher sampling
frequencies do not translate to higher accuracies.

B. Feature Extraction

The choice of entropies for feature extraction stems from
the fact that epileptic EEG exhibit a high rate of periodicity,
decreasing randomness hence, the measure of information
during epilepsy. The following are the 5 entropy estimators
used. Approximate Entropy Estimator: ApEn(m, r,N) of
a series is considered given: Run length m,Tolerance window r,
Number of sample points N ApEn measures the log likelihood
that series of patterns close (within tolerance) for a given
number of consequent observations are close on incremental
comparisons that follow[12]:

ApEn(m, r,N) = φm(r)− φm+1(r) (1)

φm(r) =
1

N −m+ 1

N−m+1∑
i=1

ln(Cmr (i))

where:
Cmr (i) =

Nm(i)

N −m+ 1

Cmr (i) values measure, within a tolerance r, the frequency
of occurance of patterns similar to a given one of window
length m and is called ‘correlation integral’

Sample entropy Estimator: The SampEn(m, r,N) is the
negative logarithm of the conditional probability that two
sequences with similar m points will remain similar at the
next consecutive point. The advantage here is that more often
than not, irrespective of record length, SampEn results are
relatively consistent where ApEn results are not [13],[14].

SampEn(m, r,N) = −ln
[Am(r)

Bm(r)

]
(2)

Am(r) =
1

N −m

N−m∑
i=1

Ami (r);Bm(r) =
1

N −m

N−m∑
i=1

Bmi (r)
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Renyi Entropy Estimator: Renyi entropy of the order α
given α ≥ 0 and α 6= 1, for a discrete random variable XN =
x1, x2....xN with pi the probabilty of occurance of the event
X = xi is given modified from [13] and [8] as:

Hα(XN ) =
1

1− α

N∑
i=1

log{pαi } (3)

Higher Order Spectrum (HOS) Entropy estimators:
These are normalised entropy estimators from poly spectra
and are representations of higher-order moments or cumulants
of a signal. The bispectrum of a signal is the Fourier transform
of the third-order correlation of the signal. It can be estimated
using the averaged biperiodogram given by [16]

B(f1, f2) = E[X(f1)X(f2)X∗(f1 + f2)] (4)

X(f)is the Fourier transform of the signal x(nT ) and ∗
denotes complex conjugation and E[.] denotes the expectation
operation.
The Fourier transform of a real-valued signal shows conjugate
symmetry, and the power spectrum is redundant in the negative
frequency region. Likewise the bispectrum being a product of
three Fourier coefficients, exhibits symmetry and is computed
in the non-redundant region, Ω as indicated in Fig.3. Formulae

Fig. 3: Nonredundant region in PSD of the bispectrum

for these bispectral entropy estimators taken from [16] are
given:
Normalized bispectral entropy 1, P1:

P1 =
∑
n

pilogpi; pi =
|B(f1, f2)|∑
Ω |B(f1, f2)|

(5)

Similarly Normalised Bispectral entropy 2, P2 is:

P2 =
∑
n

pnlogpn; pn =
|B(f1, f2)|2∑
Ω |B(f1, f2)|2

(6)

HOS analysis helps detect non-linearity and phase relation-
ships between harmonic components and characterises regu-
larity of physiological signals much better than its peers [15].

C. Statistical Significance test

Before proceeding to classify, one needs to determine the
statistical significance of the features obtained. A Student’s
t test or Analysis of Variance (ANOVA) test or any other
hypothesis test that measures how close the distributions of the
three classes lie can be used. The p value provides evidence
in support of the null hypothesis and is the probability of
obtaining the study results p(F) if the null hypothesis is true.
Small p values indicate disjoint groups with little overlap in

Basic kNN Algorithm

Input:
D - Set of training objects,
z - test object- a vector of attribute values.
L - Set of classes used to label the objects.
Output : Cz ∈ L - the class of z.
for each object y ∈ D
do
| Compute d(z, y) - the distance between z and y
end
Select N ⊆ D, the set (neighborhood) of k closest training objects for
z;
Cz = argmaxv∈L

∑
y∈N I(v = class(cy));

I(·) - an indicator function; returns the value 1 if its argument is true
else 0.

distributions indicating better statistical significance. Given
in Section IV is Table. I that contains p values of the five
entropies discussed.

D. Classifier

A classifier is a routine that takes in a set of data with
assigned labels called classes and tries to group another new
similar data set under the given classes based on some decision
rule that considers some key features of the data sets. For the
current work, k Nearest Neighbor (kNN) algorithm has been
chosen. It finds a cluster of k datapoints in the training vector
closest to the test object and classifies test object based on
class of the majority of the neighbors. Ties are broken in a
manner specified, for by taking the class of the most frequent
class in the training set. Given inside the box is the algorithm
adapted from [17].

III. DATA

The test subjects were 5 healthy and 5 epileptic patients
diagnosed with temporal lobe epilepsy. While 200 normal
EEG data samples were obtained using an Internationally
standardized 10 20 surface electrode placement scheme with
from 5 healthy volunteers in two states: 100 data samples with
relaxed awake state with eyes open and another 100 with eyes-
closed. The 100 ictal samples were recorded intracranially,
with electrodes placed on the correct epileptogenic zone,
during epileptic seizures of 5 epileptic patients, while the
200 pre-ictal EEG readings taken intracranially were from
the same 5 patients when they exhibited no seizure activities
with electrodes placed on the epileptogenic site and on a site,
its polar oppposite (100 each). Each of the 23.6 s duration,
single channel artifact free recordings were sampled at 173.61
Hz, digitized with 12-bit Analog to Digital Converter and
encoded in ASCII.

IV. RESULTS

Initially the 52 wavelets from the following 7 families -
Haar, Meyer, Daubechies(2-10), Coiflets(1-5), Symlets(2-7),
Biorthogonal and Reverse Biorthogonal(1.1, 1.3, 1.5, 2.2, 2.4,
2.6, 2.8,3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, and 6.8), were used
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to decompose the data to six levels, but after the statistical
significance test, only first level of detail coefficients were
selected. The data was segmented with a 5 second window to
improve upon the stationarity. ApEn values were estimated
with m value 5 and r assigned 0.2. The same values were
used for estimating SampEn while α was assigned a value 2
for Renyi’s entropy .

A. Test vector generation and Cross Validation

Segmenting each data file into sets of 5 seconds provided
for a total of 2400 files from three classes of which 1680 were
used for training and 720 for testing using a three fold cross
validation. The scheme was tested on Matlab R©2006a with 1
nearest neighbour and Euclidean distance metric and nearest
neighbour rule to mitigate contentions. From the results, it
was seen that biorthogonal 2.4 filter yielded the best results
of which the Mean, standard deviation and p value for all of
the 5 features are tabulated in Table.I.
Performance Metrics The following performance metrics are
usually selected to assess classifiers:
Precision = TP/(TP + FP )Percentage of correct +ve predic-
tions.
Recall/Sensitivity = TP/(TP+FN) Percentage of +ve labeled
instances predicted as +ve.
Specificity = TN/(TN + FP ) Percentage of −ve labeled
instances predicted as −ve.
Accuracy = (TP + TN)/(TP + TN + FP + FN) Percentage of
correct predictions.
True positives (TP): Seizures identified by the classifier and EEG experts.
False positives (FP): Seizures identified by the classifier but not experts.
False negatives (FN):Seizures missed by the classifier system.
True Negatives (TN): Non Seizures identified by both parties.
Table.II gives the performance metrics, along with average
time taken to classify the data using 3 level cross validation on
an Intel R© 2GHz dual core processor running on MS Windows
XP R©.

B. Discussion

In light of the ensuing discussion about the features that
have so far been reported to have given the best results ,
validity of the results obtained from the current work can be
established as being superior. In TableIII 5 papers documenting
3 class EEG classification schemes using the same database
except for the last paper [21] which uses binary classification
are summarily compared:

1) In [18], the data is decomposed to 5 levels with a
Daubechies 25 order filter. and classified with a K means
classifier. The accuracy got by constructing the filter that
requires 50 coefficients is around 97% .

2) [19] has statistical features of the detail coefficents of
the Daubechies 2 DWT at 4th level decomposition along
with LLE being used to train Modified Mixture of Ex-
perts (MME). 6 expert networks (multilayer perceptron
neural networks) constituted the MME.

3) [20] discusses how after 4 level decomposition using a
Daubechies 4 filter, the statistical features as Standard

Deviation and Non Linear Chaotic parameters as CD and
LLE can be used to train the classifiers. The coefficients
of the 4 bands are fed to 4 different classifiers in different
ways. Unsupervised k -means clustering and statisti-
cal discriminant analysis, radial basis function neural
network and LevenbergMarquardt Back Propagation
Neural Network (LMBPNN) classifiers are used. The
computation complexity and time taken do not justify
the accuracy a maximum possible of 96% with just 20
epochs tested.

4) In the study described in [16] Gaussian Mixture Models
(GMM) and Support Vector Machines (SVM) classifiers
are trained with the bispectrum phase invariant features
mean bispectrum magnitude, bispectrum phase entropy,
and normalized bispectrum entropies all of them being
features derived from the bispectrum, The average ac-
curacy being 93.11 % and 92.70 %, respectively. The
pre-ictal EEG was classified with 89.67% and 84.00%
accuracy by GMM and SVM classifiers respectively.

5) [21] Uses ApEn alone as a feature that trains a
Probailistic Neural Network (PNN) classifier. By far the
best classification accuracy of 99.6% can be obtained,
but with zero tolerance and with N=512 making the data
segment 3 second long. Approximate entropy results
are unreliable for short data and also only 77.42%
overall accuracy is reported for a binary classification
(Considering all values of N). Though the main feature
of the scheme is its simplicity, the results cannot be used
for practical purposes as the features selected are likely
to give unreliable results for small sequences.

There are papers besides these that have reported accuracies
as good as the authors have presented but consider binary
classification and use time segments much smaller than 1
s. The three factors for the good results have been the use
of non linear features and the biorthogonality of the wavelet
basis along with the use of smaller sequence of data. While
segmenting the data improved accuracy, taking too small time
frames may again lead to precarious results.

V. CONCLUSION AND FUTURE WORK

In this paper is presented a scheme of using k Nearest
Neighbour classifier trained with non linear features of DWT
of EEG samples to detect and predict the onset of epileptic
seizures and has been objectively evaluated using four metrics.

The outstanding results may be attributed to the orthog-
onality property of the wavelet under consideration namely
biorthogonal 2.4, along with the use of the non linear features
discussed, further windowing of the data has contributed to
boosted performance.
All features have been taken from just the first level of
biorthogonal 2.4 wavelet thereby decreasing the complexity
as well as constraints on the sampling frequency [11]. This
reduction in complexity along with the use of features simple
in implementation, promise the potential use of the system in
clinical application after due modifications.
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TABLE I: ’p’ values with Mean, Standard deviation(SD) and F Statistic for the features taken from biorthogonal 2.4 wavelet

Renyi ApEn SampEn P1 P2

♠ Mean ±SD Mean ±SD Mean ±SD Mean ±SD Mean ±SD
Ictal 7.526 1.7336 1.804 0.226 1.394 0.416 0.916 0.035 0.729 0.123
Background Epileptic 5.225 2.674 2.0259 0.209 2.077 0.344 0.954 0.009 0.843 0.038
Normal 6.209 2.476 2.103 0.079 2.160 0.124 0.928 0.029 0.737 0.122
’p’ value 0 0 0 0 0
F statistic 196.38 573.97 1384.66 445.03 309.19

TABLE II: Performance Metrics along with time for computation of bior2.4 features using kNN classifier

Accuracy with non DWT features Accuracy with DWT features Precision Sensitivity Specificity Avg CPU time in seconds
91.5 99.6 99.9 99.4 99.9 0.54

TABLE III: Table of Performance metrics comparing recent papers and the method proposed

Features used to train Classifiers or method used to classify Sensitivity Specificity Accuracy Author papers

Variance of 5th level Daub 25 coeffecients - K Means classifier 96.1 97.67 99 Suparerk J in [18]
Statistical features of 4thlevel Daub2 coeffecients and LLE -
MME

97.5Preictal
98 Ictal

98
Normal

98.5 Nor-
mal

Ubeyli E in [19]

Mixed Band Wavelet Chaos Neural Network 96.67 Samonwoy.G, Adeli H, Nahid.D in [20]
HOS features - GMM and SVM 96.67(GMM)

95.67(SVM)
93.11(GMM)
92.67(SVM)

92(GMM)
96.67(SVM)

Chua K, U Rajendra Acharya, Eric C, Lim C.M,
Toshiyo Tamura in [16]

ApEn - PNN 99.6 Srinivasan. V, Eswaran. C, Sriram N in [21]

Non linearfeatures of DWT fed to kNN classifier 99.4 99.9 99.6 Current work

ACKNOWLEDGEMENT
The Authors wish to acknowledge the guidance of Prof

U Rajendra Acharya especially in developing HOS entropies.
The authors would also like to acknowledge the work of Prof
Andrzejak, Bonn University, Neurology Department, Centre
for Epilepsy in recording the data and making it available for
the public.

REFERENCES

[1] K. Radhakrishnan, B. Santoshkumar, A.Venugopal, “Prevalence of
benign epileptiform variants observed in an EEG laboratory from South
India”, J. Clin Neurophysiol 1999, 110: pp.280-285.

[2] Oliver Faust, U. Rajendra Acharya, Lim C.M, Bernhard H.Sputh,
“Automatic Identification of Epileptic and Background EEG Signals
Using Frequency Domain Parameters”, Int. J. Neural Syst, 2010 vol.
20, no. 2, pp. 195-176.

[3] Tarassenko L, Khan Y. U, Holt M. R. G, “Identification of inter-ictal
spikes in the EEG using neural network analysis,” Inst. Elect.Eng.Proc.
Sci. Meas. Technol, Nov.1998 vol. 145, no. 6, pp. 270278.

[4] Indiradevi K.P, Elizabeth Elias, Sathidevi P.S, Nayak S. Dinesh, Rad-
hakrishnan K. “A multi-levelwavelet approach for automatic detection
of epileptic spikes in the electroencephalogram” Computers in Biology
and Medicine Vol. 38, 7, 2008, pp.805 - 816 .

[5] Subasi A, “Application of adaptive neuro-fuzzy inference system for
epileptic seizure detection using wavelet feature extraction”, Computers
in Biology and Medicine, 2007, 37(2), 227244 .

[6] Kannathal N, U. Rajendra Acharya, Lim C.M, Sadasivan P.K, “Char-
acterization of EEG - A comparative study ”,J.Computer Methods and
Programs in Biomedicine ,Oct 2005 , Vol. 80, Issue 1, pp 17-23.

[7] Andrzejak R.G, “Indications of nonlinear deterministic and finite
dimensional structures in time series of brain electrical activity: De-
pendence on region and brain state”, Physical Review E, 2001 vol.
64(6).

[8] Kannathal N, Lim C.M, U. Rajendra Acharya, SadasivanP.K, “En-
tropies for detection of epilepsy in EEG ”,J.Computer Methods and
Programs in Biomedicine, Dec. 2005, Vol. 80, Issue 3, pp. 187-194.

[9] Hasan Ocak, “Automatic detection of epileptic seizures in EEG using
discrete wavelet transform and approximate entropy”, J Expert Systems
with Applications 36, 2009, 20272036, Elsiever Publications.

[10] The data from Bonn University is available at http:
www.meb.uni-bonn.de/epileptologie/science/physik/eegdata.html.

[11] Stéphane Mallat, “ A Wavelet Tour of Signal Processing”, San Diego:
Academic Press, 1999.

[12] Pincus, S. M., “Approximate entropy as a measure of system complex-
ity”, Proc. Natl. Acad. Sci.USA., vol. 88, pp. 2297-2301.

[13] Costa M, Goldberger A.L, Peng C.K, “Multiscale entropy analysis of
biological signals”, Phys Rev E 2005,71:021906.

[14] Richman, Joshua S, Moorman, J. Randall, “Physiological time-series
analysis using approximate entropy and sample entropy”, Am J Physiol
Heart Circ Physiol, 2000, vol. 278, pp. H2039–2049.

[15] David R. Brillinger, “Some basic aspects and uses of higher-order
spectra”, Signal Processing, 1994 vol. 36, 3, pp. 239-249.

[16] U. Rajendra Acharya, Eric Chern-P.C, Chua K.C, Lim C.M, Toshiyo
Tamura, “Analysis and Automatic Identification of Sleep Stages Using
Higher Order Spectra”, Int. J. Neural Syst, 2010, vol. 20, no. 6, pp
509-521.

[17] Wu X, Kumar V, Ross Quinlan, Ghosh J, Yang Q, Motoda H,
McLachlan G.J,Ng A, Liu B, Yu P.S and others, “Top 10 algorithms
in data mining ” Springer,J. Know. Inf Sys, Vol 14,1,p(1-37),2008.

[18] Suparerk Janjarasjitt, “Classification of the Epileptic EEGs Using the
Wavelet-Based Scale Variance Feature”,J. Applied Biomedical Engi-
neering, 2010, Vol.3,1, pp 19-25.

[19] Ubeyli, E.D, “Modified Mixture of Experts for Analysis of EEG
Signals,” Engineering in Medicine and Biology Society, EMBS 2007.
29th Annual International Conference of the IEEE , pp.1546-1549, 22-
26 Aug. 2007

[20] Samanwoy Ghosh-Dastidar, Hojjat Adeli, Dadmehr Nahid, “Mixed-
Band Wavelet-Chaos-Neural Network,Methodology for Epilepsy and
Epileptic Seizure Detection”, IEEE Transactions on Biomedical Engi-
neering, 2007, vol. 54, 9, pp.1545-1551.

[21] Srinivasan V, Eswaran C, Sriram N, “Approximate Entropy-Based
Epileptic EEG Detection Using Artificial Neural Networks”,IEEE
Transactions on Information Technology In Biomedicine, May 2007,
Vol. 11, 3, pp.288-295.

 

 

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 20,2021 at 04:01:51 UTC from IEEE Xplore.  Restrictions apply. 


