
A Scalable Cloud Platform using Matlab Distributed
Computing Server Integrated with HDFS

Rahul Dutta1, Annappa B2
#Department of Computer Science & Engineering, National Institute of Technology Karnataka,

Surathkal, India
1dutta.rd@gmail.com, 2annappa@ieee.org

Abstract— The Hadoop Distributed File System (HDFS) is a
large data storage system which exhibits several features of a
good distributed file system. In this paper we integrate Matlab
Distributed Computing Server (MDCS) with HDFS to build a
scalable, efficient platform for scientific computations. We use an
FTP server on top of HDFS for data transfer from the Matlab
system to HDFS. The motivation of using HDFS for storage with
MDCS is to provide an efficient, fault-tolerant file system and
also to utilize the resources efficiently by making each system
serve as both data node for HDFS and worker for MDCS. We
test the storage efficiency of HDFS and compare with normal file
system for data transfer operations through MDCS.

Keywords— HDFS, Matlab, Distributed Computing, PaaS.

I. INTRODUCTION
In today’s cloud computing scenario, there is a need to

achieve high computational speed and efficient storage. The
Hadoop Distributed File system (HDFS) demonstrated several
desirable features for scalable cloud storage. With the parallel
computation tool and Distributed Computing Server in Matlab,
it offers a highly efficient and scalable platform for
computationally intensive applications. Matlab provides high-
performance computational routines for complex calculations
and an easy-to-use scripting language. Hence an integration of
Matlab, along with HDFS would provide an excellent
platform for applications where scalability is an issue in terms
of both computation speed and storage.

HDFS achieves efficient storage space utilization through
compression of stored data. The HDFS architecture also
provides fast access to large amount of data distributed across
several systems and provides high fault tolerance and
scalability. Matlab, on the other hand allows fast and efficient
distributed processing of computationally intensive
applications. With parallel computing toolbox, the task of
parallel processing of scientific computations becomes easy.

Integration of HDFS with Matlab will provide an ideal
platform for applications which has very high storage and
computation speed requirement. Examples of such
applications are large-scale image processing, geo-spatial data
processing and bioinformatics.

The Hadoop Distributed File System was originally
designed to work with the MapReduce framework for huge
data analysis. However, HDFS demonstrates several features
which are desirable for distributed storage of enormous data.
Thus, HDFS can be a good choice for use with other
applications for distributed and fault-tolerant storage, over

ordinary file system. However, the performance of such a
system needs to be carefully analysed.

The rest of the paper is arranged as follows. Section II
provides an overview of HDFS and MDCS architecture.
Section III introduces our concept of the integrated system.
Section IV analyses and compares the results of the system
followed by the concluding remarks in section V.

II. HDFS AND MDCS ARCHITECTURE
This section discusses the architecture of HDFS and MDCS

and highlights the features of these architectures. We look at
the factors that determine a good storage system and how
HDFS tries to achieve them. We then discuss about the
MDCS architecture and functioning.

A. HDFS Architecture
The HDFS architecture[11] consists of the following

components:
1. Name Node – The name node stores the metadata

information of the cluster. It contains the metadata
along with enumeration of blocks of HDFS and a list
of data nodes in the cluster.

2. Data Nodes - The data nodes are the actual sites where
the HDFS blocks are stored. The data nodes are
connected to the name node and periodically send
heartbeat signals to inform their status to the name
node.

3. Secondary Name Node – The secondary name node
contains a snapshot of the primary name node and in
case of name node failure, the secondary name node is
used.

The architecture of HDFS provides many desirable features
of a good distributed file system.

1. Fault tolerance – Each data block in HDFS is
replicated on multiple data nodes across the HDFS
cluster. The replication factor determines the number
of replica of each data block. In case of a node failure,
HDFS is able to switch to different data nodes to
retrieve the data. This provides reliability and
availability.

2. Efficient storage space utilization – All data blocks in
HDFS are compressed using Gzip algorithm by default.
This reduces the size of data being stored in HDFS and
better utilization of storage space.

3. Fast I/O operations – The HDFS blocks are indexed at
the name node, and the name node contains the

2012 International Symposium on Cloud and Services Computing

978-0-7695-4931-6/12 $26.00 © 2012 IEEE

DOI 10.1109/ISCOS.2012.17

141

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:30:11 UTC from IEEE Xplore. Restrictions apply.

location of the data nodes. Thus they can be located
very easily and retrieved faster.

Fig. 1 HDFS Architecture

B. MDCS Architecture
The Matlab Distributed Computing Server[9] consists of

the following components.
1. Matlab Client with parallel computing toolbox – This

is the node where the application is written and
executed. It must have the MDCS service installed.

2. Matlab job Scheduler – This scheduler schedules
various Matlab jobs to the available worker nodes. The
scheduler is normally configured on the Matlab client
machine.

3. Worker nodes – These are the computers in the cluster
that perform the computing. All the worker nodes must
have MDCS installed and running. Multiple worker
nodes can be configured on a single computer with
multi-core CPU. A maximum of 12 workers can be
configured on a single PC.

Fig. 2 MDCS Architecture
III. PROPOSED ARCHITECTURE

In our proposed architecture we configure the HDFS cluster
and implement an FTP server on the name node. This FTP
server provides an interface for data transfer by outside

applications. Applications written in Matlab will access HDFS
through this FTP server.

In order to integrate Matlab with HDFS, a common
interface for data exchange is needed. For both the systems to
work with each other, a communication channel is required
that will allow Matlab to retrieve and store data into HDFS
clusters. The solution to this is to use FTP as a channel for
communication. HDFS can be accessed over FTP and Matlab
can be used to store and retrieve files using FTP. The FTP
server will typically runs on the name node machine of HDFS.
The Matlab system will act as the FTP client and access data
via the FTP server. In this system, Matlab will be able to
directly interact with HDFS for data retrieval and update.

In our proposed system, we configure data nodes of the
HDFS cluster and the Matlab workers on the same systems.
Such configuration allows better utilization of resources as
well. The name node, FTP server, Matlab client and the job
scheduler are configured on the same system. This is done for
better utilization of resources. However, this configuration can
be changed and each component can be located on a different
system. However, since the FTP server interacts directly with
the name node, these two should run on the same system to
avoid performance issues. This architecture is shown in fig. 3.

Fig. 3 Proposed Architecture

IV. IMPLEMENTATION
The proposed system has been implemented and tested in

two ways. In the first case, we configure all the components
on a single node cluster and test the I/O characteristics. In the
second case we configure four nodes as HDFS Data Node +
Matlab worker and carry out the testing. Each of the nodes
consist of Core i7 2.93 GHz CPU, 8 GB RAM, 500 GBx2
Hard disk and Ubuntu Linux 12.04 LTS. For network
connections, we use D-Link DES-3526 Fast Ethernet switch.
For implementation we use Hadoop v1.0.3 and Matlab
R2012a. In each of the tests, we considered the following
three types of data.

1) Single data file of medium size.

2) Single data file of large size.

3) 800 image files (approx. 1 MB each) total 1 GB.

142

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:30:11 UTC from IEEE Xplore. Restrictions apply.

Data transfer rates and the size of the data in HDFS are
compared with normal (ext4) file system. The FTP hosts are
mounted as file systems using curlftpfs [6] and the Matlab
functions ‘textscan’ and ‘imread’ for reading and ‘fprintf’
and ’imwrite’ to write data from Matlab.

A. Test Case 1 (single node)
In this test, all the components (name node, data node,

Matlab cluster, job scheduler) are configured on a single
system. We set the replication factor as 1 in HDFS (since it
is a single node cluster) and perform data transfer (read and
write) operations from Matlab. We consider the above
mentioned types of loads and repeat each experiment for 10
times. We repeat the experiment for different block size of
HDFS and measure the time for data transfer and size of data
in HDFS. We also conduct experiment based on normal file
system with Matlab to compare and contrast with HDFS.

B. Test Case 2 (multiple nodes)

We repeat the same experiments as in test case 1 for 4 data
nodes + Matlab workers. Replication factor in HDFS is set to
3. All the nodes are connected using D-Link Fast Ethernet
10/100 Mbps switch. We also conduct experiment with FTP
server on remote system and compare the result with HDFS.
We compare the file sizes and data transfer times. We
calculate the performance improvement over normal file
system.

V. RESULT AND ANALYSIS
Table 1 shows the file size for different block sizes in

HDFS and comparison with the file size in normal (ext4) file
system. This result is common for both test case 1 and test
case 2.

TABLE 1
SIZE OF FILES ON HDFS AND EXT4

File type Size of single replica
HDFS (16
MB block
size)

HDFS (512 MB
block size)

EXT4 file
system

Data file
(single)

685.29 685.29 718.6 MB

Data file
(single)

4.97 GB 4.97 GB 5.3 GB

800 image
files

955 MB 955 MB 1 GB

The amounts of compression achieved in the three cases are

4.63%, 6.22% and 6.73%. The compression ratio is invariant
to the following factors:

1. HDFS block size
2. Cluster size

Thus, using HDFS instead of normal file system leads to
better space utilization. The compression ratio is best for small
files.

Fig.3 File size comparison between HDFS and EXT4

The time taken for data transfer operations in both the test

cases is shown below. Table II lists the time for read
operations and Table III lists the time taken for write in single
node and cluster of size 4 respectively. All results are average
over ten trials of each experiment.

TABLE II

TIME TAKEN FOR READ OPERATIONS

File
type

Read Time (in seconds)
HDFS

(16 MB
block
size)

HDFS
(512 MB

block
size)

Remote
EXT4

file
system

Single
Node

Single
data file
of 718.6

MB

12.20 11.64 12.35

Single
Data file

of 5.3
GB

86.47 82.56 87.54

800
image
files (1

GB)

19.25 16.33 15.36

4
Nodes
Cluster

Single
data file
of 718.6

MB

62.55 61.99 64.33

Single
Data file

of 5.3
GB

465.42 460.66 469.43

800
image
files (1

GB)

70.06 68.61 58.8

From Table II, we observe that HDFS gives slightly better

performance for large files but performance is not better in

143

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:30:11 UTC from IEEE Xplore. Restrictions apply.

case of multiple smaller files. A larger HDFS block size
improves the read time than smaller block size. In case of
large files, bigger block size reduces the total number of
blocks and this improves the reading time of the file. Since
each data block is located on a single node, larger block size
reduces the total number of blocks and hence improves the
reading time. Smaller block size causes lot of fragments of
large files and retrieving each fragment from different data
nodes cause overhead which reduces the performance.

In case of both single node and 4 node cluster, the highest
performance gain is observed for single data file of 5.3 GB.
The read time is reduced by 5.6 % in single node system and
for the 4 node cluster; it is reduced by 1.8 %.

Fig.5 Comparison between HDFS and EXT4 for read operation

TABLE IIII
TIME TAKEN FOR WRITE OPERATIONS

File
type

Write Time (in seconds)
HDFS

(16 MB
block
size)

HDFS
(512 MB

block
size)

Remote
EXT4

file
system

Single
Node

Single
data file
of 718.6

MB

13.39 12.09 13.03

Single
Data file

of 5.3
GB

100.5 93.52 110.36

800
image
files (1

GB)

18.26 16.54 15.34

4
Nodes
Cluster

Single
data file
of 718.6

MB

86.28 78.52 124.02

Single
Data file

of 5.3
GB

624.81 580.96 623.71

800
image
files (1

GB)

122.55 121.93 97.4

Fig.6 Comparison between HDFS and EXT4 for write operation

Compared to the read operations, in case of write operation,

HDFS gives better performance over EXT4. The main reason
for this is that HDFS writes out the data blocks concurrently
on different data nodes. For a single node system as well as 4
node cluster, HDFS give best performance for single data file
of 5.3 GB. In case of a single node, it gives 15.34 % better
performance and for the 4 node cluster, it gives 6.85 % better
performance.

VI. CONCLUSIONS
Our experiments show that HDFS provides better I/O speed

with large datasets and files in both standalone and cluster
configuration. The performance is however, marginally poor
for small files. HDFS provides high degree of fault tolerance,
which is transparent to the application (Matlab) running over
it. In case of any node failure, Matlab can also detect the
worker node failure and continue using other worker nodes.
HDFS provides efficient storage space utilization using
compression for all types of data and file. This is an essential
feature when using large datasets for processing. The
proposed system can be easily scaled-up or down by adding
nodes and configuring them. It does not need any changes to
be made to the existing Matlab applications or data. The
addition or removal of nodes or storage space is transparent to
the Matlab applications. The proposed system is thus elastic in
nature. Our proposed system can be used as a platform for
very large dataset processing in scientific computations.

In future it may be possible to further improve the I/O
characteristics by modifying various parameters of HDFS. It
may also be possible to have better compression by changing
the underlying compression methods in HDFS.

REFERENCES
[1] Tom White, “Hadoop: The Definitive Guide”, First Edition, Yahoo

press, June 2009.
[2] Cong Wang, et. al, “Towards Secure and Dependable Storage Services

in Cloud Computing”, IEEE transactions on service computing, Vol. 5,
No. 2, pp. 220-232, April-June 2012.

144

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:30:11 UTC from IEEE Xplore. Restrictions apply.

[3] Yongqiang He, et. al, “RCFile: A Fast and Space-efficient Data
Placement Structure in MapReduce-based Warehouse Systems,” IEEE
ICDE conference., 2011.

[4] Da-Wei Zhang, “Research on hadoop-based enterprise file cloud
storage system,” 3rd International Conference on Awareness Science
and Technology, pp. 434-437, Sept. 2011.

[5] Yanmei Huo, “A Cloud Storage Architecture Model for Data-Intensive
Applications,” International Conference on Computer and Management,
pp. 1-4, May 2011.

[6] Curlftpfs (Oct. 2012) website. [Online]. Available:
http://curlftpfs.sourceforge.net/

[7] Mathworks. (2012). [Online]. Available:
http://www.mathworks.in/support/product/DM/installation/ver_current/

[8] Choy, R., “Parallel MATLAB: Doing it Right”, Proceedings of the
IEEE, Vol. 93, Issue 2, pp. 331-341.

[9] Matlab (2012). [Online]. Available: Mathworks. (2012). [Online].
Available:
http://www.mathworks.in/support/product/DM/installation/ver_current/

[10] Raeth, P.G, “Parallel MATLAB Using Standard MPI
Implementations”, High Performance Computing Modernization
Program Users Group Conference (HPCMP-UGC), pp. 438-441, June
2010.

[11] Apache Hadoop project (2012). [Online]. Available:
http://hadoop.apache.org/

[12] Kapil Bakshi, “Considerations for Big Data: Architecture and
Approach”, IEEE Aerospace Conference, pp. 1-7, March 2012.

145

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 09,2021 at 09:30:11 UTC from IEEE Xplore. Restrictions apply.

