
A Study of Performance Scalability by

Parallelizing Loop Iterations on Multi-core
SMPs

Prakash Raghavendra, Akshay Kumar Behki, K. Hariprasad, Madhav Mohan,
Praveen Jain, Srivatsa S. Bhat, V.M. Thejus, Vishnumurthy Prabhu

Department of Information Technology, National Institute of Technology Karnataka,
Surathkal

srp@nitk.ac.in, aksbeks@gmail.com, harinitk2007@gmail.com,

madhavmon@gmail.com, prgu jain@yahoo.com, bhat.srivatsa@gmail.com,

thejus.vm@gmail.com, prabhuvishnumurthy@gmail.com

Abstract. Today, the challenge is to exploit the parallelism available in
the way of multi-core architectures by the software. This could be done
by re-writing the application, by exploiting the hardware capabilities or
expect the compiler/software runtime tools to do the job for us. With
the advent of multi-core architectures ([1] [2]), this problem is becoming
more and more relevant. Even today, there are not many run-time tools
to analyze the behavioral pattern of such performance critical applica-
tions, and to re-compile them. So, techniques like OpenMP for shared
memory programs are still useful in exploiting parallelism in the ma-
chine. This work tries to study if the loop parallelization (both with and
without applying transformations) can be a good case for running scien-
tific programs efficiently on such multi-core architectures. We have found
the results to be encouraging and we strongly feel that this could lead
to some good results if implemented fully in a production compiler for
multi-core architectures.

1 Introduction

Parallel processing requires program logic to have zero dependency between the
successive iterations of a loop. To run a program in parallel we can divide the
task between multiple threads or processes executing in parallel. We can also
go up to the extent of running these parallel pieces of code simultaneously on
different nodes in a high speed network. However the amount of parallelization
possible depends on the program structure as well as the hardware configuration.

OpenMP [3] is an Application Program Interface (API) specification for
C/C++ or FORTRAN that may be used to explicitly direct multi-threaded,
shared memory parallelism. It is a portable, scalable model with a simple and
flexible interface for developing parallel applications on platforms from the desk-
top to the supercomputer. OpenMP is an explicit (not automatic) programming
model, offering the programmer full control over parallelization. It has been im-
plemented on most of the popular compilers like GNU (gcc), Intel, IBM, HP,
Sun Microsystems compilers.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 476–486, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Study of Performance Scalability by Parallelizing Loop Iterations 477

Most OpenMP parallelism is specified through the use of compiler directives
which are embedded in C/C++ or FORTRAN source code. The use of the
pre-processor directive (starting with #) along with the OpenMP directive in-
structs the compiler during pre-processing to implement parallel execution of
the code following the OpenMP directive.

There are various directives available, one of them being ‘#pragma omp
parallel for’ whose implementation was our prime interest in the project. The
‘#pragma’ directive is the method specified by the C standard for providing ad-
ditional information to the compiler, beyond what is conveyed in the language
itself. The ‘#pragma omp parallel for’ directive instructs the compiler that all
the iterations of the ‘for’ loop following the directive can be executed in parallel.
In that case, OpenMP compiler will generate code to spawn optimized number of
threads based on the number of cores available. Consider the following example
of a typical C/C++ program using OpenMP pragmas:

#include <omp.h>
main () {
int var1, var2, var3;
/*** Serial code ***/

.

.
/*** Beginning of parallel section. Fork a team of threads ***/
/*** Specify variable scoping ***/

#pragma omp parallel private(var1, var2) shared(var3)
{
/*** Parallel section executed by all threads ***/

.

.
/*** All threads join master thread and disband ***/
}

/*** Resume serial code ***/
.
}

The variables var1 and var2 are private to each of the threads spawned and the
variable var3 is shared among all the threads. The intent in this work is to study
some OpenMP programs and see if these scale well on multi-core architectures.
Further, we would also like to parallelize non-parallel loops by applying trans-
formations (using known techniques like unimodular and GCD transformations
[5] [6] [7]) and see if they too scale well on such architectures. We used some
known OpenMP pragmas as case studies and implemented them in our compiler
to study the performance. In Section 2, we describe the way we implemented
these OpenMP pragmas. In Section 3, we discuss unimodular transformations
which we used to parallelize non-parallel loops. In Section 4, we tabulate and ex-
plain all the results. Section 5 concludes the paper and suggests some directions
for future work.

