
An Empirical Study of License Violations in Open
Source Projects

Arunesh Mathur∗, Harshal Choudhary†, Priyank Vashist‡, William Thies§, Santhi Thilagam¶

∗ † ‡ ¶ National Institute of Technology Karnataka, Surathkal
§ Microsoft Research India

Abstract—The use of Open Source Software (OSS) components
in building applications has presented the challenge of integrating
them in a way such that the licenses of the individual components
do not conflict with each other and if applicable, the overall
license of the application. These conflicts lead to violations,
with many having far reaching legal consequences. While
proprietary software firms are often plagued with the risks
of not satisfying the clauses of OSS licenses, we hypothesize
that a large degree of code reuse within the OSS community
poses similar threats too. Through an analysis of 1423 projects,
consisting of approximately 69 million non-blank lines of code
from Google Code project hosting, we validate instances of code
reuse between projects by comparing their licenses. Our results
discover four violations, evaluated by searching for files that
share similar content. Additionally, we present statistics on code
reuse within the set of projects.

Index Terms—Software reusability, Open source software,
Legal factors

I. INTRODUCTION

Over the years, the increasing popularity of the open source

movement has resulted in a collaborative environment for soft-

ware developers to create and share software components and

libraries that can be used to provide a variety of functionality.

These components usually comprise of projects or parts of

projects, that can be plugged into new or existing software,

bringing about savings in time and money. Potential users of

such components (for example, FFmpeg1) include both —

proprietary software developers (close source products like

Bits on the Run, MovieGate etc.) and developers from the OSS

community (open source projects like VLC, MPlayer etc).

Licenses also have a major influence the degree of reuse of

such a component. For example, a few pieces of the FFmpeg li-

brary are distributed under the GNU Lesser General Public Li-

cense (LGPL), which while supporting free software, enables

a certain degree of reuse in proprietary software as well. Every

such license provides certain restrictions and allowances, but

due to wide variety of approved open source licenses (69 as

of May 2012), legal issues between licenses emerge when

components with incompatible licenses are integrated together.

This has been characterized as the license-mismatch problem

[1]. For instance, the GNU General Public License (GPL) has

two popular versions that are widely accepted – version 2 and

1FFmpeg is a widely used multimedia library (http://ffmpeg.org)

version 3; the latter however, is not backwards compatible

with components that are released under version 2 only (i.e.,

not upgradable to a later version). In situations where they

are left with little choice, other than to combine components

released under incompatible licenses, developers have known

to form a new license that is compatible with each of the

licenses of the individual components. The formation of new

licenses to combat the license mismatch problem is known

as license proliferation [2]. License proliferation results in

further incompatibilities and has been strongly discouraged by

the Open Source Initiative (OSI, http://opensource.org), which

has set up a License Proliferation Committee to specifically

tackle this problem [3].

Proprietary firms lie potentially at a greater risk of

license infringements when trying to incorporate OSS

into their products, since all OSS licenses require source

code to be made available for everyone to examine; most

firms deal with such discrepancies through their legal

departments. Perhaps one of the most famous GPL violation

involved the use of BusyBox – an amalgamation of Unix

utilities for embedded devices – in the proprietary products

of Samsung, Westinghouse, JVC amongst others, that

resulted in multiple court cases in the United States.

In one such case, the developers of BusyBox, with

the aid of the Software Freedom Law Center (SFLC),

sued Westinghouse for $137865, consisting of damages

and lawyer’s fees, and ordered all infringing products

to be donated to charity [4] [5]. Recently, firms like

BlackDuckSoftware (http://www.blackducksoftware.com),

OpenLogic (http://www.openlogic.com) and Palamida

(http://palamida.com) have begun providing services to clients

that plan on using OSS components in their products by

helping them analyze the possible legal outcomes. Code

search engines like Krugle (http://krugle.org) and Koders

(http://koders.com) have also incorporated code search options

that allow filtering of results based on license.

Due to the high degree of code reuse within the open

source community, we believe that open source developers

share similar concerns too. In one such instance, Emacs

(http://www.gnu.org/software/emacs), a widely used GPL’ed

text editor recently fixed a violation [6]; its developers had

failed to make publicly available the sources of a certain

grammar which the GPL required them to do. Through this

2012 IEEE 35th Software Engineering Workshop

1550-6215/13 $26.00 © 2013 IEEE

DOI 10.1109/SEW.2012.24

168

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 12,2021 at 05:54:46 UTC from IEEE Xplore. Restrictions apply.

empirical study, we aim to discover cases of license violations

in a vast array of open source projects by tracking cases of

code reuse, and subsequently validating them to ensure fair

license use. In order to achieve this, we first retrieve a large

repository of open source projects and scan for code clones

between projects, using the approach of a plagiarism detection

tool – MOSS (Measure of Software Similarity) [7], which has

been tried on a variety of programming languages.

The rest of the paper is organized as follows: Section II

presents the related work, Section IV briefly describes open

source licensing, Section III presents the sample set selection

process, Section V presents the approach behind this study,

Section VI presents the results and findings, In Section VII,

we conclude the paper, with suggestions for future work.

II. RELATED WORK

Reasons and motivations for code reuse in OSS have been

studied previously. Through a case study involving 15 open

source projects, von Krogh et al. [8] show that there is active

reuse of code, algorithms and methods in the open source

community. Haefliger et al. [9] describe the behavior of open

source developers – comparing them with their counterparts in

corporate firms based on incentives to reuse code by examining

a set of 6 open source projects. The authors point out that

OSS developers reuse code to mitigate development costs, to

avoid working on mundane problems and instead focus on the

difficult ones or quickly release production code.

There is a notable lack of large scale analysis of code

repositories that track reuse of OSS. Audris Mockus [10] quan-

tifies large scale code reuse in popular and large open source

projects and confirms the existence of more than 50% of the

files in more than one project, by finding directories of source

code files that share several file names and only selecting those

cases where the fraction of files was greater than a threshold.

While this may seem as a reasonable heuristic, comparing

the content of source code files would seem to provide a

tighter bound than by just comparing their file names. The

performance of both these techniques is captured in a study

of code reuse in the FreeBSD project by Chang and Mockus

[11]. The authors report that comparing files based on their

content produces results with fewer false positives than file

name based comparison, which also fails to detect the same

file with a different name.

The legal ramifications of code reuse in the context of

open source licenses has been a lesser explored topic. Ger-

man and Hassan [1] develop patterns and models to help

developers solve conflicts and compatibility issues between

open source licenses. Sojer et al. [12] analyze the risks

professional software developers face when reusing code in

an ad-hoc fashion from the Internet. Based on a survey of 869

professional developers, the authors conclude that ad-hoc code

reuse from the Internet is common and that most developers

are oblivious of the legal implications of such code reuse.

Recently, tools that can detect open source license violations at

the binary level – Fingerprint Generator/Detector (FiGD) [13]

and Binary Analysis Tool (BAT) [14] – have been developed.

We, however, are looking for license violations on the source

code level, rather than the binary level.

The vast field of code clone detection tools that operate

at the source level have been surveyed in [15]. Despite the

presence of a large number of such tools, there have been no

reports of their performance on a large scale. A large number

of these tools are used for finding clones in smaller sets and

focus on improving the quality of results rather than scaling.

III. SAMPLE SET SELECTION

A study of this magnitude requires a source of large

open source repositories containing projects released un-

der any popular open source license(s), thereby en-

abling clear compatibility checks. We examined popular

code hosting services like Google Code project hosting

(http://code.google.com/hosting), GitHub (http://github.com)

and SourceForge (http://sourceforge.net), which have a wide

variety of open source projects managed by developers over

the web. Google Code offers a set of 10 popular open source

licenses to choose from, while SourceForge offers a choice of

over 80 licenses. GitHub encourages developers to indicate the

license in a COPYING/LICENSE file – however, the absence

of such a file conceals the license of the project. All the three

services allow project files to be browsed online or cloned to

a local drive.

We chose Google Code Hosting over the GitHub and

SourceForge due to the cogent set of licenses it offers, thus

making it easier to identify license violations. To get a

good mix of projects, we started by selecting projects with

programming languages tags such as C, CPlusPlus, Java,

Python, JavaScript, ObjectiveC etc. We then added projects

tagged with Database, Game, Web, Google, Linux, Windows,

MacOSX, iPhone, Android, Graphics etc. During this phase,

for each project, we pinned down its license, repository URL

and Activity level. The Activity level describes the degree

of contribution of the developers over time, and can take

values High, Medium, Low or None. A High level indicates

that the project is in active development and is contributed

to frequently, while None indicates it has had very little/no

activity.

After forming the list of projects, we retrieved snapshots

of their version control repositories using the URLs stored

previously. For projects having no source code in their

git/svn/hg branch, we first checked to see if they been had

migrated to a different location (usually mentioned on the

project homepage) and in all such cases, we retrieved code

from the new location. In all other scenarios, we scanned the

Downloads tab for potential source code files. To simplify

this process, we wrote special tools and scripts to automate

and ignore any non-text files that could be present in the

project. In total, we managed to gather a set of 1423 projects,

all retrieved between January and March 2012.

169

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 12,2021 at 05:54:46 UTC from IEEE Xplore. Restrictions apply.

IV. OPEN SOURCE LICENSING

Licenses provide copyright holders, a means of delegating

permissions to distribute, modify or build derivative works

to potential users of their software. The OSI lists a set of

requirements that any license must fulfill on order to be

recognized as a valid open source license, called the Open

Source Definition (OSD) [16]. The requirements of the OSD

include: (i) Allow free redistribution of and modification of

the code; (ii) Make the source code available to the public

(via. the Internet); (iii) Allow derived works to be distributed

under the original license; (iv) Not discriminate against any

group or individual; (v) Must not be specific to a technology

and not restrict any software. Open source licenses are broadly

classified as Copyleft/Restrictive and Permissive licenses. Per-

missive licenses do not add constraints on the licensing of

the derivative code, except for a reference/citation and that

the license text be untouched in the modified/distributed code.

Copyleft licenses on the other hand, influence the license of

the derived/modified code by necessitating it to be released

under the license of the original software.

Google Code project hosting offers a set of eight different

licenses to choose from: (i) GNU General Public License

version 2 (GPL v2); (ii) GNU General Public License version

2 (GPL v3); (iii) GNU Lesser General Public License version 3

(LGPLv3); (iv) Apache License version 2.0 (APLv2); (v) MIT

License; (vi) New BSD License/3-Clause (New BSD); (vii)

Artistic License/GPL (AL/GPL); (viii) Mozilla Public License

version 1.1 (MPLv1.1). The GPL is a strong copyleft license,

while the New BSD/MIT/APLv2 licenses are non-copyleft and

permissive. All other licenses lie in between. Apart from these

eight choices, Google Code provides the Other Open Source
option to use all other licenses. Table I describes compatibility

amongst these licenses.

More recently, multi-licensing – the practice of offering a

choice of licenses to the licensee – has to a certain extent

sorted license compatibility, but it presumes familiarity with

a wide set of licenses. Examples of Multi-licensed soft-

ware include or example, the PERL license, which offers a

choice between the Artistic License and the GPL and JQuery,

which offers using the GPL or the MIT license. The Mozilla

projects were tri-licensed (MPLv1.1 or later, GPLv2.1 or later,

LGPLv2.1 or later) initially, but have recently migrated to

MPLv2.0.

V. RESEARCH METHOD

This section describes two topics: (i) Our definition of

license violations and how code reuse assists us in detecting

them; and (ii) The procedure to detect code reuse in the sample

set of open source projects (Section III).

A. Defining reuse and violations

Before describing the ideas behind this study, it is crucial to

establish the definitions of code reuse and license violations.

We are searching for cases where one project incorporates a

set of source code files (or a part of the set) from another

project in the same corpus. Such source code files are those

Program P 1

(License L1)

Program P 2

(License L2)

Project Q
(License L3)

Fig. 1. Definition of a license violation

that belong to the provider project and are not, for example,

a third party library (outside of the corpus) that both projects

may coincidentally use. We are not interested in accredited

lines of code that may be reused between projects, since such

reuse is highly granular and difficult to detect.

Figure 1 illustrates the definition of a license violation. Let

Program P 1, licensed under L1, be reused in the form of

Program P 2 licensed under L2, which includes P 1 and all

derivative works, if any. Q, the project which contains P 2 may

by itself, have an overall license L3. Based on these notations,

we define violations as the following rules:

1) Type 1: L1 and L2 are incompatible (for instance, L1

is the MPLv1.1 and L2 is the GPL) or, L1 and L2 are

compatible, but L1’s copyleft nature is not honored by

L2 (for instance, L1 is the GPL and L2 is the MIT

license).

2) Type 2: Similar to the violations of first type, but with

checks between L2 and L3 instead.

B. Architecture

Plagiarism detection tools find similarity between small

pieces of text/code and are widely used in academic set-

tings, usually for checking assignments turned in by students

and submissions to workshops/conferences. Our approach is

borrowed from the popular plagiarism detection tool MOSS,

developed by researchers at Stanford University, which is used

to detect similarities in programming assignments and supports

a variety of languages. MOSS begins the process of detecting

code by building hashes of k–grams of source code files, and

then selecting those pair of files that have the most common

hashes further comparison. This pipeline helps in scaling the

comparison process efficiently, while keeping it fundamentally,

independent of the programming language.

Figure 2 depicts the architecture of this system. It consists of

three phases – Preprocessing, Fingerprinting and Comparing.

The Preprocessing stage removes all superfluous features of

the source content such as whitespace, capital letters, new lines

etc., which are undesirable to determine similarity between

files. Since MOSS has primarily been used in academic

settings, it replaces all instances of variable declarations with

a common symbol before it begins matching files, as students

170

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 12,2021 at 05:54:46 UTC from IEEE Xplore. Restrictions apply.

GPLv3 EPLv1.0 MPLv1.1 LGPLv3 MIT New BSD APLv2

GPLv2 No No No No Yes Yes Yes

GPLv3 – No No Yes Yes Yes Yes

EPLv1.0 – – Yes Varies Yes Yes Yes

MPLv1.1 – – – No Yes Yes Yes

LGPLv3 – – – – Yes Yes Yes

MIT – – – – – Yes Yes

New BSD – – – – – – Yes

TABLE I
COMPATIBILITY AMONGST GOOGLE CODE’S CHOICE OF LICENSES

Preprocessing

Fingerprinting

Comparing

Fig. 2. Architecture of MOSS

may choose to modify variable names to evade such tools.

However, Haefliger et al. [9] observed that in the open source

world, code reuse is largely, black–box (unmodified). Hence,

we do not modify or replace any variable declarations with

holders.

Once the source code is preprocessed, the Fingerprinting

stage starts by dividing it into k–grams, which are continuous

substrings of size k. These are hashed, and subsequently,

a subset of these are selected as the fingerprint of a file.

Assuming collision free hashes, if two files share the same

hash, then it is very likely that they share the same k–gram.

For a large set of files, hashing can be a very computationally

intensive process for large values of k. Rabin-Karp’s rolling

hash function reduces this complexity by computing the hash

of the ith k–gram from the hash of the i − 1th k–gram. For

example, consider the k–gram (c1 c2 . . . ck−1 ck), with each

ci representing the ith character. Given a base b, the k–gram’s

hash H(i) is calculated as:

H(i) = c1 ∗ bk−1 + c2 ∗ bk−2 + ... + ck−1 ∗ b + ck (1)

Similarly, the hash H(i + 1) of the k–gram (c2 c3 . . . ck

ck+1) is:

H(i + 1) = c2 ∗ bk−1 + c3 ∗ bk−2 + ... + ck ∗ b + ck+1 (2)

Writing H(i + 1) in terms of H(i):

H(i + 1) = (H(i)− c1 ∗ bk−1) ∗ b + ck+1 (3)

Thus, calculating the hash of H(i + 1) from H(i) requires

two additions and two multiplications, which makes hashing

successive k–grams extremely fast. Since for arbitrary b, the

value of H(i) may exceed the largest number that can be

stored on a machine, H(i) is stored as H(i) % m, where m is a

prime number. The choice of m is crucial to this computation,

since a poor selection could lead to an increase in collisions.

For a file of length n, a total of n − k + 1 hashes are

generated. When computed for a large number of files, the

hashes require a lot of storage space and thus reduce efficiency

for the later stages. To counter this, it is preferred to select

a subset of these hashes, and store them as the fingerprint

of a file. This is achieved through the Winnowing algorithm

defined as follows:

Let a window of size w be a series of w continuous hashed

k–grams (hi, hi+1, . . ., hi+w−2, hi+w−1). From each window,

a hash is selected as follows:

1) Select the smallest hash in a window

2) In case of a tie, select the rightmost smallest hash

We store the hashes that form the fingerprints of files in

a relational database as two tables. The first table (schema:

file id, project name, file name), holds the details of

each file, and the second table (schema: file id, hash,

line numbers) holds the fingerprints. The file id attribute

from the first table, the primary key, serves as the foreign key

for the second table.

The Comparison phase starts once the fingerprints for all

the files in every project have been generated. To find files

similar to any given source code file d in project p, we select

those files that have the highest number of hash matches with

d and are outside of p. Files that have the matched hash count

greater than a given threshold t, are those that have a very high

probability of being similar to d. To ensure that the matches

obtained as a result of this phase are not false positives, it

is important to ignore boilerplate text. Open source licenses

usually require the license user to place legal boilerplate at

the beginning of every file, which may lead to increasing

the number of matched hashes between files. To avoid this,

171

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 12,2021 at 05:54:46 UTC from IEEE Xplore. Restrictions apply.

we hash the headers of all licenses offered by Google Code

and ignore all such hashes when matching files. Finally, we

pretty print all pairs of matched files to aid us in discarding

all remaining false positives.

VI. RESULTS

A. Repository statistics

Through our sample selection process, we retrieved 1,423

projects translating to 340,164 text files, consisting of about

69 million non-blank lines of code. Figure 3 shows the count

of projects for each license. The GNU GPLv3 and GPLv2

constituted nearly 46% of all licenses and this is in accordance

with their popularity in the open source space [17]. The

EPLv1.0 and MPLv1.1 were the least used licenses, given

their are incompatibility with the popular GPL and prohibitive

reuse. Both these licenses are specific to the Eclipse and

Mozilla community and generally, are rarely used outside of

those communities.

212

801

355

55

0

200

400

600

800

1000

High Medium Low None

Co
un

t

Project Activity

Fig. 4. Distribution of projects based on Google Code activity.

Figure 4 shows the count of projects based on Google Code

activity. While the activity of a project can change over time,

depending on numerous factors, we capture the activity status

at a particular instance for the purpose of this study. 56.29%

of the selected projects were Medium-active compared to the

3.87% of None-active projects.

B. Code Reuse

Our initial experiments dealt with choosing values for k,

m and t judiciously, as they directly influence the results of

the procedure described in Section V-B; a poor choice leads

to multiple false positives between files. The value of k and t
primarily depend on the nature of the document and the strings

it contains – in practice however, we observed that values of

40 and 45 respectively, work sufficiently well, even on source

code files written in a variety programming languages. To

determine a suitable value for m, we conducted two tests on

about 10 MB of text – first, with the largest 32-bit prime,

which led to 128 collisions and second, with the largest 64-bit

largest prime number, which led to no collisions at all. A total

of 31,187,119 hashes were generated at the end of V-B. While

we did find false positives, they were largely mitigated by

ignoring hashes of license headers at the beginning of source

files.

We discovered 103 instances of code reuse in the set of

projects, listed in Table III. Figure 5 presents the activity levels

of the reused projects. Although High and Medium active

projects were reused equally (16 each), it is worth nothing

that High active projects constitute only 14.90%, where as

Medium active projects constitute 56.29% of the total set of

projects. Consequently, the reuse rate for the former (7.56%)

is higher than than the latter (2.00%). This is in conformity

with the observations made in [9] – ratings and certification

influence the popularity of code, as poorly written code can

be detrimental to any system. Projects that were actively

developed and updated were reused more frequently and this

is true for both corporate firms, as well as the open source

world.

16 16

4

1

0

3

6

9

12

15

18

High Medium Low None

Co
un

t

Project Activity

Fig. 5. Distribution of reused projects based on Google Code activity.
Although High and Medium active projects are equally used, the fraction
of the former is nearly 3.8 times higher.

C. License violations

Table II details the license violations out of the instances

of code reuse listed in Table III. The Type of violation
column indicates the category of license violation discussed in

Section V-A. We observed a lack of proper use of the acceptor

license in 3 out of the 4 cases of violations. For instance, to

apply the GPL to a project, the Free Software Foundation lists

the following requirements [18] :

• Add a copyright statement to each source code file along

with the copyright permission text:

This file is part of Foobar.

Foobar is free software: you can redistrib-
ute it and/or modify it under the terms of
the GNU General Public License as publishe-
d by the Free Software Foundation, either
version 3 of the License, or (at your opti-
on) any later version.

Foobar is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERC-
HANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public Licen-
se for more details.

You should have received a copy of the GNU

172

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 12,2021 at 05:54:46 UTC from IEEE Xplore. Restrictions apply.

173

425

222

10 13

154

23

133

215

55

0

100

200

300

400

500

MIT/X11 GPLv3 GPLv2 EPLv1.0 MPLv1.1 LGPLv2 AL/GPL APLv2.0 New BSD Others

Co
un

t

License Name

Fig. 3. Distribution of projects based on license. The General Public Licenses (GPL) together constitute nearly half of all licenses.

Code provider [provider license] Code acceptor [Acceptor license] Type of violation Acceptor license used correctly?

Flvplayer [MPLv1.1] Khan Academy [Other Open Source] 1 no

Arduino [GPLv2] Micropendous [MIT] 2 yes

Miranda [GPLv2] Toptoolbar [LGPLv3] 1,2 no

Miranda [GPLv2] Wi2geoplugin [MIT] 2 no

TABLE II
INSTANCES OF LICENSE VIOLATIONS

General Public License along with Foobar.
If not, see <http://www.gnu.org/licenses/>.

• Include the GPL license in a text file in the project tree.

• Place the Copyright notices of all copied GPL code at

the beginning of every file.

Therefore, these 3 cases cannot be truly be considered as

cases of violations, as the license of the acceptor project

in each of these cases is technically, unclear. We classify

such violations as violations of recommended practice, where

recommended practice refers to meeting the requirements

listed by the license. In other words, had the developers of

the acceptor project applied all of the clauses of the license

they intended to use (mentioned on the Google Code project

homepage), the would have violated the provider project’s

license in the process. The Acceptor license used correctly?
column indicates whether the acceptor license was applied

correctly.

In the following sections, we present the details of each

license violation and suggest possible steps that can be

taken to help erase the violation, such as using alternate

libraries or choosing an alternate license, wherever applicable.

1) Flvplayer and Khan Academy: Flvplayer is a flash

player library that can be plugged into websites for

streaming multimedia and is licensed under the MPLv1.1

(http://code.google.com/p/flvplayer). The MPLv1.1 allows a

limited amount of copyleft by requiring all modifications to

MPLv1.1 licensed files and files that borrow MPLv1.1 licensed

code, to be released under the same license. This library is

used by Khan Academy, an online e-learning platform that

provides video tutorials for a variety of subjects on its website

(http://code.google.com/p/khanacademy), seemingly to stream

flash content. The developers of the Khan Academy repository

however, fail to mention its license explicitly, as the Other
Open Source option advises them to. This violation falls under

Type 2, as the MPLv1.1 may conflict with the possible choices

of the overall license of the project. For example, a choice of

any of the GPL licenses (v2 or v3) would make the release

incompatible. Most of the reuse by Khan Academy is without

any modification; all derived work has been credited according

to the requirements of the MPLv1.1.
There exist other alternatives to Flvplayer –

OSFlv player (http://www.osflv.com), f4player

(http://gokercebeci.com/dev/f4player) and flowplayer

(http://flowplayer.org) – all licensed under the GPLv3,

that could serve as potential replacements for the less

compatible MPLv1.1 licensed Flvplayer. However, we are

unsure if the integration of these alternatives would be

feasible from a technological perspective.
To notify the developers of Khan Academy of this violation,

we opened an issue on their new GitHub repository. One

of its developers acknowledged the lack of of a license;

unfortunately the repository has been moved or deleted at the

time of writing this paper.

2) Arduino and Micropendous: Arduino is a GPLv2 li-

censed (or a later version) software suite for program-

ming for microcontroller boards with the same name

(http://code.google.com/p/arduino). Micropendous, like Ar-

duino, is a suite for programming hardware boards

with the provision to run Arduino specific software

(http://code.google.com/p/arduino). Micropendous contains

the Arduino board firmware as a part of its distribution, but

173

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 12,2021 at 05:54:46 UTC from IEEE Xplore. Restrictions apply.

is licensed under the liberal MIT license. The GPLv2 being

copyleft in nature, requires the distribution to be to be under

a license that does not violate its norms. Micropendous is

however, not required to be GPLv3 licensed, since Arduino

is only distributed and not modified or linked. Therefore, this

violation can be rectified by changing its license to Other
Open Source, and choosing a combination of the MIT and

GPLv2 license, as the overall project license, i.e., the libraries

(Arduino) remain under their original license (GPLv2) and the

Micropendous specific code uses the MIT license. In order

to have the overall projects license as the MIT license, the

developers of Micropendous would have to find an alterna-

tive Arduino library that released under a license not more

restrictive than the MIT license.

We posted the details of this violation to the Micropendous

discussion forum. The project license has since then, been

changed to Other Open Source.

3) Miranda and Toptoolbar: Miranda is a multi-

protocol instant messenger licensed under the GPLv2,

or a later version (http://code.google.com/miranda). The

GPL, by its copyleft virtue requires all modified and

derivative works to be released under the GPL. Toptoolbar

(http://code.google.com/p/toptoolbar) is a plugin/extension

that adds a toolbar for quick access of functions in the

Miranda IM client and is released under the LGPLv3 (or

a later version). This violation falls under the both the

categories. Type 1, because the GPL requires all derivative

works to be released under the same license, but the derived

works in the repository are not licensed. At the same time,

the developers of Toptoolbar have the option to choose from

either the GPLv2 or a later version, namely the GPLv3 for

the reused Miranda SDK code. Choosing the GPLv2 can be

ruled out, since the GPLv2 and the LGPLv3 are incompatible;

whereas, although the GPLv3 and LGPLv3 are compatible,

choosing the GPLv3 would require Toptoolbar to be conveyed

under the GPLv3. This leads to a violation of Type 2. This

impasse can however, still be solved by releasing Toptoolbar

under the GPLv2 (or a later version) and licensing all derived

works under the same license. The code reused from the

Miranda SDK consists of user interface components that

are Miranda specific and thus results in non-availability of

alternatives.

4) Miranda and Wi2geoplugin: Wi2geoplugin is another

plugin/extension that enables location based sharing in the

Miranda IM client and is licensed under the permissive MIT

license (http://code.google.com/p/wi2geoplugin). By using and

linking against the GPL’ed code of Miranda, Wi2geoplugin

forms a derivative work, which is required to be released under

the GPLv2 (or a later version) and thus is a violation of Type 2.

Like toptoolbar, Wi2geoplugin borrows code from the Miranda

SDK to build and extend the user interface and hence, makes

it difficult to locate alternatively licensed code. However, by

licensing Wi2geoplugin under the GPLv2 (or a later version),

its developers can avoid such a violation.

We contacted the developers of both, Toptoolbar and

Wi2geoplugin describing these violations and seeking their

opinion, but did not receive any correspondence in return till

the time of writing this paper.

VII. CONCLUSION & FUTURE WORK

With a large number open source components just a click

away, license compatibility is quickly turning into an intricate

scenario, that needs to be dealt with diligence. The legal com-

plications involved in using open source licenses is imperative

to the success of any project. Crucial to the core of this study

is the collection of open source projects from project hosting

websites; intuitively, one may not expect mature GNU projects

to be in violation.

It is important to emphasize the validity of our results. While

we have focused on reuse as a metric to detect violation, we are

unsure of the manner in which the code is actually used inside

the project. Examining the projects for source comments,

commit history and documentation may offer further insight

into license use.

We believe that there is scope for automation in detecting

violations and offering possible solutions to these problems.

In this study, we suggest two possible solutions to counter

violations, either by tweaking the overall license of the project,

or by suggesting replacements for the reused libraries under

a different license. Both these solutions can be integrated

into the existing programmer productivity toolchain, with

advancements in code search engines that now enable filtering

of code on license. We are currently working on a tool to

achieve this.

ACKNOWLEDGMENTS

We are grateful to Alwyn Roshan Pais for his comments

and feedback on detecting code reuse. We would also like

to thank Gervase Markham and Clint Adams for useful

discussions on open source licensing. This work is supported

by a Microsoft Research India travel grant.

REFERENCES

[1] D. M. German and A. E. Hassan, “License integration patterns:
Addressing license mismatches in component-based development,”
in Proceedings of the 31st International Conference on Software
Engineering, ser. ICSE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 188–198. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070520

[2] “License proliferation,” accessed April, 2012. [Online]. Available:
http://www.opensource.org/proliferation

[3] “License proliferation report,” accessed April, 2012. [Online]. Available:
http://www.opensource.org/proliferation-report

[4] “Busybox and the gpl prevail again - up-
dated 4xs,” accessed April, 2012. [Online]. Available:
http://www.groklaw.net/article.php?story=20100803132055210

[5] “Best buy, samsung, westinghouse, and eleven other brands
named in sflc lawsuit,” accessed April, 2012. [Online].
Available: http://www.softwarefreedom.org/news/2009/dec/14/busybox-
gpl-lawsuit/

[6] “Emacs license violation,” accessed April, 2012. [Online]. Available:
http://lists.gnu.org/archive/html/emacs-devel/2011-07/msg01155.html

174

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 12,2021 at 05:54:46 UTC from IEEE Xplore. Restrictions apply.

[7] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in Proceedings of the 2003
ACM SIGMOD international conference on Management of data, ser.
SIGMOD ’03. New York, NY, USA: ACM, 2003, pp. 76–85. [Online].
Available: http://doi.acm.org/10.1145/872757.872770

[8] G. v. Krogh, S. Spaeth, and S. Haefliger, “Knowledge reuse in open
source software: An exploratory study of 15 open source projects,”
in Proceedings of the Proceedings of the 38th Annual Hawaii
International Conference on System Sciences - Volume 07, ser. HICSS
’05. Washington, DC, USA: IEEE Computer Society, 2005, pp.
198.2–. [Online]. Available: http://dx.doi.org/10.1109/HICSS.2005.378

[9] S. Haefliger, G. von Krogh, and S. Spaeth, “Code reuse in open
source software,” Manage. Sci., vol. 54, no. 1, pp. 180–193, Jan. 2008.
[Online]. Available: http://dx.doi.org/10.1287/mnsc.1070.0748

[10] A. Mockus, “Large-scale code reuse in open source software,” in
Proceedings of the First International Workshop on Emerging Trends
in FLOSS Research and Development, ser. FLOSS ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 7–. [Online]. Available:
http://dx.doi.org/10.1109/FLOSS.2007.10

[11] H.-F. Chang and A. Mockus, “Evaluation of source code copy
detection methods on freebsd,” in Proceedings of the 2008 international
working conference on Mining software repositories, ser. MSR ’08.
New York, NY, USA: ACM, 2008, pp. 61–66. [Online]. Available:
http://doi.acm.org/10.1145/1370750.1370766

[12] M. Sojer and J. Henkel, “License risks from ad hoc reuse of code from
the internet,” Commun. ACM, vol. 54, no. 12, pp. 74–81, Dec. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2043174.2043193

[13] C. Brown, D. Barrera, and D. Deugo, “Figd: An open source
intellectual property violation detector,” Proceedings of the 21st
International Conference on Software Engineering Knowledge
Engineering SEKE2009, pp. 536–541, 2009. [Online]. Available:
http://scs.carleton.ca/ cbrown7/papers/seke09-figd.pdf

[14] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding
software license violations through binary code clone detection,”
in Proceedings of the 8th Working Conference on Mining Software
Repositories, ser. MSR ’11. New York, NY, USA: ACM, 2011, pp. 63–
72. [Online]. Available: http://doi.acm.org/10.1145/1985441.1985453

[15] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Sci. Comput. Program., vol. 74, no. 7, pp. 470–495, May 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.scico.2009.02.007

[16] “Open source document,” accessed April, 2012. [Online]. Available:
http://opensource.org/docs/osd

[17] “Open source license data,” accessed April, 2012. [Online]. Available:
http://osrc.blackducksoftware.com/data/licenses/

[18] “How to use the gpl licenses for your own software,” accessed April,
2012. [Online]. Available: http://www.gnu.org/licenses/gpl-howto.html

175

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 12,2021 at 05:54:46 UTC from IEEE Xplore. Restrictions apply.

Code provider [provider activity] Code acceptor [acceptor activity]

Lufa-Lib [High] Micropendous [High], Embedded-Projects [High], Usb-Travis [High], Hiduino [Medium]

Arduino [High] Pushpak [Medium], Micropendous [High], Wireplant [Low], Easyrobot [Medium]

Libsquish [Medium] Libhplasma [Medium], Nvidia-Texture-Tools [Medium]

Guichan [Low] DB-Tins07 [Medium], DB-Speedhack07 [Medium], Naruto-Hand-Signs-Fighting [Low]

Upp-Mirror [High] Boxvivd [Medium], Upp-Mac [Low]

Portableproplib [Medium] Xbps [High]

Chipmunk-physics [Medium] Chipmunk-Space-Manager [Medium], Cocos2d-x [Medium], Cocos2d-iPhone [High]

Box2d [Low]
Quickanoid [Low], Emo-Framework [High], Upp-Mirror [High], Cocos2d-iPhone [High],

Cocos2d-x [Medium], Party-Family[Medium], Cocos2d-Android [Medium]

Skia [High] Cocos2d-x [Medium]

Cocos2d-iPhone [High] CCjoystick [Medium], Cocos2d-x [Medium], chipmunk-spacemanager [Medium]

Kissxml [Medium] Parallax-Scrolling-Videogame [Low], Xmppframework [High]

Cocoahttpserver [Medium] Runtimebrowser [High], Xmppframework [High]

Cocoaasyncsocket [High] Mjpeg-iPhone [Medium], Cocoahttpserver [Medium]

Cocoalumberjack [Medium] Cocoahttpserver [Medium]

Syphon-Framework [Medium] Syphon-Implemenatations [Medium]

Miranda [High]
Miranda-Twitter-Oauth [Medium], Mirandaimplugins [Low], Dbmmapmod [Medium],

Pboonplugins [Medium], Pescuma [Medium], Toptoolbar [None], Wi2geoplugin [None]

Mirandaimplugins [Low] Dezeath [Medium]

Juced [Medium] Ugen [Medium]

Gwen [High] Party-Family [Medium]

Msinttypes [Low]
Omega-Cronus [Low], Mockcpp [Medium], Soar [Medium], Networkpx [Medium], Ossbuild [High]

Sacd-Ripper [Medium], Foxpilot [Medium], Test-NG-PP [Medium], 3ceamu [High], Wagic [High]

Libjingle [High] Pescuma [Medium], Gtalkbot [High], Ipcamera-For-Android [Low]

Growl [High] Growlmail [High], Quicksynergy [Low], Sequel-Pro [High], Kaincode [Medium], Welly [High]

Gtm-Oauth [Medium] Etsycocoa [High]

Google-Toolbox-For-Mac [Medium] Precipitate [Medium], Update-Engine [Low], Mocean-Sdk-Ios [High], Blazingstars [Medium]

Codesuppository [Medium] Meshimport [Medium]

Gtm-Http-Fetcher [Medium]
Gtm-Oauth [Medium], Etsycocoa [High], Gtm-Oauth2 [Medium], Google-Api-Objectivec-Client [Medium],

Gdata-ObjectiveC-Client [High]

Gtm-Oauth2 [Medium] Google-Api-ObjectiveC-Client [Medium], Gdata-ObjectiveC-Client [High]

Gdata-Objectivec-Client [High] Update-Engine [Low], Precipitate [Medium], Google-Email-Uploader-Mac[Medium], Vidnik[Low]

Mockcpp [Medium] Test-NG-PP [Low]

Effocore [None] Effogpled [Low]

Googletest [Medium] Cpp-Library-Project-Template [Low], Easyrobot [Low], Party-Family [Low], Slimdx [High]

Support [High]
Winx [Low], Adlaird [Low], Avbin [Low], Postgres-Kit [High], Libdgnsc [Low],

Duplicate-Windows [Low], Doom-Android [Low]

Android-Wifi-Tether [High] Android-Wired-Tether [High]

Jmonkeyengine [High] Jme-Glsl-Shaders [Medium], Jmonkeyplatform-Contributions [Medium]

Jbox2d [High] Plar [Medium], Angry-Food [Low]

Siphon [High] Csipsimple [Medium]

Flvplayer [Medium] Khanacademy [High]

TABLE III
INSTANCES OF CODE REUSE IN THE SET OF PROJECTS

176

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on April 12,2021 at 05:54:46 UTC from IEEE Xplore. Restrictions apply.

