
Comprehensive Address Generator for Digital
Signal Processing

Ramesh Kini M.†, Sumam David S., Senior Member, IEEE
Department of Electronics and Communication Engineering,

National Institute of Technology Karnataka, Surathkal, INDIA - 575025
†email: rameshkinim@gmail.com

Abstract—Computational efficiency of Signal Processing Al-
gorithm implemented in hardware depends on efficiency of
datapath, memory speed, and generation of addresses for data
access. In case of signal processing applications, pattern of data
access is complex in comparison with other applications. If
implemented in a general purpose processor, address generation
for signal processing applications will require execution of a series
of instructions and use of datapath elements like adders, shifters
etc. In general, considerable processor resources and time are
utilized. It is desirable to execute one loop of a kernel per clock.
This demands generation of typically three addresses per clock:
two addresses for data sample/coefficient and one for storage of
processed data. A set of dedicated, efficient Address Generator
Units (AGU) will definitely enhance the performance. This paper
focuses on design and implementation of Address Generators
for complex addressing modes required by Multimedia Signal
Processing algorithms. Among other addressing modes, a novel
algorithm is developed for accessing data in a Bit-Reversed
order for Fast Fourier Transforms (FFT), and Zig-zag order for
Discrete Cosine Transforms (DCT). When mapped to hardware,
this scales linearly in gate complexity with increase in the size
and uses less components.

I. INTRODUCTION

Offline data processing or stream data processing of large
number of data points involves feeding the datapath with data
in appropriate sequence; as decided by the algorithm or the
dataflow diagram. Patterns of data access can be identified
and these patterns can be called as addressing modes. As it
is evident that addressing mode can be viewed as primitive
process of generating the address of next element of data,
with a priori knowledge of the address of the data that is
being currently accessed. Address generation needs simple
arithmetic operations like addition, subtraction, comparison
etc. Older processors utilized the ALU for address generation,
reducing the availability of the computational elements for
data processing. As the processor and the VLSI technology
improved, dedicated computational units are built for address
generation, thus address generation is fast and concurrent with
data processing.

Digital Signal Processors (DSP) may have support for
address generation of complex addressing modes like circular
or butterfly. The programmer needs to initialize and control
the address generation at the beginning and end of loops.
For example, butterfly address generation for 8-point FFT will
have 3 loops and the programmer will have to initialize the
values of registers at the beginning of each loop and monitor

Modifier

Adder / Subtractor

Offset Register

To Mem bus.
Address

Fig. 1. Address generation scheme

the termination of the loop. This requires some code to be
executed by the processor as an overhead and resulting in a
break in the flow of data processing.

Some of the most often used addressing sequences are
Sequential, Sequential with offset, Shuffled, Bit-reversed, Re-
flected. Hulina et al. [1] discusses implementation of Copro-
cessor for generation of these address sequences and provides
the host processor with few additional special addressing
modes defined by signal processing algorithms, without any
change in the host processor’s instruction set architecture nor
the external memory.

Efficient generation of Address sequences like Zig-zag for
DCT, sequence of addresses to fetch the twiddle factors in
FFT operation, and sequence of addresses to fetch the data in
convolution operation are essential for Multimedia Processing.

This paper describes an Address Generation Unit suitable
for a Dynamically Reconfigurable Datapath Processor which
is capable of generating address sequences that can generate
next address in one clock and can be synchronized with the
datapath operations by using the Address Generate Enable sig-
nal. The following address sequences suitable for multimedia
applications are supported:

• Bit-reversed: for data fetch and data store in case of a
complete N -point FFT kernel.

• Fetching twiddle factors for a complete N -point FFT
kernel.

• Data fetch operation for a Convolution kernel
• Zig-zag: suitable for fetching data for entropy coding.
• Other modes like linear, modulo N (circular), divide-by-

N etc.

Fourth International Conference on Industrial and Information Systems, ICIIS 2009, 28 - 31 December 2009, Sri Lanka

978-1-4244-4837-1/09/$25.00 ©2009 IEEE

325

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 02,2021 at 11:36:45 UTC from IEEE Xplore. Restrictions apply.

+/−

nn

n
+/−

nn

n

nn n

Data Ports
of Memory

nn

2n

nn

2n
* *

n

n

Register FilesBarrel Shifter

2n

2n

n

q

D
at

ap
at

h
St

at
us

p

Co
nf

ig
ur

at
io

n
D

at
ap

at
h

Data from
other DRDPs

n n n

Fig. 2. Schematic of a DRDP

The scheme of generation of sequences of addresses is as
shown in Fig. 1. The next address in the sequence is generated
by adding or subtracting a modifier to the current address.
The resultant will be treated as an effective address where the
required data sample/coefficient needs to be accessed.

Section II describes algorithms developed and the corre-
sponding hardware schematic for some of the addressing
modes listed above. It deals with AGUs for data access
and twiddle factor fetch suitable for a complete N -point
FFT kernel; implementation of N -point FFT kernel using
Dynamically Reconfigurable Data Path (DRDP), AGUs for
data, coefficient access for a complete Convolution kernel and
implementation of kernel; and AGU for accessing data from
NxN pixel array in a zig-zag order used in entropy coding
after DCT. Section III discusses the results obtained.

II. ADDRESS GENERATION UNIT

The AGU discussed here is tailored to work with a DRDP,
though the concept can be used with any datapath unit with
appropriate synchronization. AGU and DRDP are designed
as parameterizable word length and address size using a
Hardware Description Language in fully Structural style of
coding. Thus the hardware synthesized will be identical to the
description in the code. AGU and the DRDP provide necessary
status signals back to the controller and can be controlled by
a microprogrammed controller; hence reconfigurability can be
achieved easily with change of the microprogram.

A. Overview of the Dynamically Reconfigurable Datapath
The DRDP under discussion supports signed integer and

fixed point arithmetic; has two Adder/Subtractors, two Mul-
tipliers, sixteen Registers, a Barrel Shifter and status bits
of various functional elements. The output of any of these
functional units can be routed to at least one input of all
the functional units. MAC units can also be formed with a
register with guard bits. The DRDP unit will have three input
ports and a output port other than two memory read ports
and a memory write port. Schematic of a DRDP is shown in

SRA

Mask

SRL

N/2

Correction
Generate Logic

Bf_Br_Add_Sub

Offset_Addr_Reg

Offset

Control Logic
Shift

SRL: Shift Right Logical
SRA : Shift Right Arithmetic

Correction

Fig. 3. Hardware schematic of bit-reversed address generator

Fig. 2. The configuration of a datapath is defined by a control
word that is stored in a configuration memory. This can be
considered as a microinstruction. A sequence of such control
words or microinstructions forms a microprogram, addressed
by a microprogram counter. The sequencing of execution of
microinstructions is controlled by state of conditional flags
through a microprogram control unit. A datapath suitable
to execute a signal processing kernel is formed by writing
microprogram. Microprograms for various kernels are stored
in the microprogram memory. By changing the base address of
the microprogram we can switch between kernels in a single
clock cycle.

The DRDPs can be cascaded by interconnecting the In-
put/Outputs (IO) appropriately to form a complex datapath
with kernel operations spread over multiple DRDPs in a
chained or pipelined fashion.

B. Address Generation for N -point FFT Kernel
1) Bit Reversed Address Generation for N -point FFT: In

radix-2 FFT algorithms, the input or the output samples need
to be re-ordered in bit-reverse fashion depending on whether
Decimation-In-Time (DIT) or Decimation-In-Frequency (DIF)
approach is employed. The samples are recursively partitioned
into sub-partitions of even and odd samples within a sub-
partition. The sequence of indices of the sub-partition accessed
for processing or for storage of processed sample, resembles
bit-reversed order of addresses of memory locations where the
original sequence of samples are stored.

For example, consider a 8-point DIF FFT being computed
on samples of data are stored in locations {0, 1, ...6, 7}. The
pairs of data samples used for first stage of FFT computation
are {0, 4}, {2, 6}, and {1, 5}, {3, 7}, the second stage FFT
computation needs data sample pairs as {{0, 2}, {4, 6}} and
{{1, 3}, {5, 7}}. For the third stage, the data access will
contain sample pairs as {{0, 1}, {2, 3}, {4, 5}, {6, 7}}. As
in-place computation is being used, within a given stage, it is
the pairs of the data samples that are important and not the
sequence of pairs of data.

Address generation for the first stage is simple, and can be

326

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 02,2021 at 11:36:45 UTC from IEEE Xplore. Restrictions apply.

achieved by using a binary adder with propagation of carry
in the reverse order i.e. from most significant bit towards
least significant bit. For a N -point FFT address generation,
the current address is to be added with N/2 using a reverse
carry propagation adder. This does not hold good for the other
stages. The modifier needs correction at the end of address
generation of a sub-partition. A novel algorithm for generating
Bit-Reversed Addresses for any N -point FFT with log2N
stages has been developed, hardware designed, simulated,
tested and the block schematic is as shown in Fig. 3. The
algorithm can be summarized as follows:

Reset: Reset SRA; Reset SRL;
Reset Offset Address Register;

Init: Load SRA with Mask; Load SRL with N/2;
Begin: If Bitwise OR(SRA out, Cur Offset)==All Ones

Then Correction = Bitwise OR(N/2, SRL out)
Else Correction = SRL out;
If Bitwise OR(Mask, Cur Offset)==All Ones
Then {Enable Shift SRA, SRL;
Reset Offset Address Register;
}
Offset=Bit Rev Add(Cur Offset, Correction);
Goto Begin;.

Generation of addresses can be terminated on generating
addresses for log2(N) stages of FFT; for which SRL content
becoming zero is one of the indicators.

Many algorithms to compute bit-reversed address are avail-
able in literature. Many of them are best suited for coding
using high level languages on microprocessor or digital signal
processor [2], [3], [4], [5]. These algorithms can be classified
as those based on heuristic [2] and algorithms using Seed-
Table [3]. Address generation using these methods have a long
delay as compared to the data-path latency and the memory
access delay.

Hardware Address Generation Units (AGU) have been de-
veloped for array processors [6]. Nwachukwu [6], Hulina [1]
implement the Bit-Reversed address generation using Counter-
Multiplexer method. Counter-Multiplexer method can generate
variety of patterns, but as the number of addresses increase,
area increases exponentially and also results in increase in
power dissipation and leakage. The method proposed in this
paper can generate sequence of addresses suitable for many
of multimedia algorithms; using adders, shifters, counters in
the datapath; and very few gates and flipflops for the simple
control logic. This translates to a linear increase in transistor
count with increase in the number of address bits unlike
counter-multiplexer method. Banerjee et al. [7] describe an
algorithm for address generation for data access for N -point
FFT. The hardware developed for implementing the algorithm
uses 3 loadable down counters and allied control circuit.
Hardware developed by us for the same functionality needs
only 2 shift registers and allied control circuit as depicted in
Fig. 3. The shifters hold data patterns like ‘11..1100..00’ and
‘00..00100..00’, and are shifted once after completion of each

Re

Im

DataMem

Re

Im

CoefftMem

Re ImRe
g

+ +
ImRe

Re

Im

D
RD

P

Re ImRe
g

_ _
ImRe

Re

Im

D
RD

P

_
**

_
**

Re Im

D
RD

P
Re Im

Re

Re Im

D
RD

P
Re Im

Re

Re

Im

** **

D
RD

P

Im

D
RD

P
Re

Im Re

Im
+

OutputMem

Fig. 4. Datapath used for DIF based FFT

stage of FFT, and only 2 bits toggle in each of the shifters
as compared to multiple bits toggling in each of the counters
after every address generation as in Banerjee et al. [7]

FFT kernel can be executed in a single DRDP in a folded
manner or can be executed in four DRDPs in a chained
manner. A typical datapath for DIF is as shown in Fig. 4.
In each of these datapaths 4 DRDP units have been cascaded
and configured to form a single datapath capable of performing
one butterfly computation for every two clocks so that N -point
FFT operation is completed in Nlog2N+4 clock cycles where
a constant of 4 clock cycles corresponds to initialization of the
DRDP and write back of the last butterfly result. The setup
assumes that the twiddle factors are precomputed and saved
in memory.

The input or the output samples need to be re-ordered in bit-
reverse fashion depending on whether DIT or DIF approach
is employed. This reordering is done by exchanging data in
memory locations pointed by pairs of address generated by
Bit-reversed address generator for first stage. For the actual
exchange the data elements of the pair are fetched from
memory, stored in registers of the DRDP and written back
in exchanged order from registers. For fetching the data and
writing it back we use two AGUs appropriately synchronized.

Discussion on reducing the number of memory accesses for
mapping the data array in bit-reversed order by avoiding self-
reversed binary address patterns is given in [8]. This concept is
useful in reducing the memory accesses required during pre or
post processing of data in terms of reordering the data samples
while computing FFT using DIT or DIF schemes. This is
realized by comparing the bit-reversed address generated by
AGU with an internal linear up counter. If the counters match,

327

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 02,2021 at 11:36:45 UTC from IEEE Xplore. Restrictions apply.

Correction, counter load and
shift control Generation Logic

N/4

(up counter)
NN Counter

"00...01"

(up counter)
N/2 Counter

"00...01"

NN

SRL

N/2

Bf_Br_Add_Sub

Offset_Addr_Reg

Offset

Correction

Fig. 5. Hardware schematic of FFT twiddle factor address generator

exchange is not required, hence no memory read or write
operations; the AGU will continue to generate the next address
in the sequence.

2) Address Generation for accessing Twiddle factors for N -
point FFT: For a FFT butterfly computation, a pair of data
operands with bit-reverse order address and a twiddle factor
are needed.

An algorithm for generating sequence of addresses for
fetching twiddle factors for any N -point FFT with log2(N)
stages has been developed, hardware designed, simulated,
tested and the block schematic is as shown in Fig. 5. The
algorithm can be summarized as follows:

Reset: Reset Nby2 counter; Reset NN counter;
Reset Offset Address Register;

Init: Load Nby2 counter = 1; Load NN counter = 1;
Load SRL with N/2;

Begin: If (NN counter==NN and Nby2 counter==N/2)
Then shift SRL;
If (NN counter == NN)
Then load NN counter = 1;
If (Nby2 counter == N/2)
Then load Nby2 counter = 1;
If (Correction select) Then

{Correction=Cur offset;
Offset=Cur offset-Correction; }

Else {Correction=N/4;
Offset=Cur Offset+Correction;}

Goto Begin;

Correction select()
{
(NN counter==NN) OR (NN0) OR

(NN1 AND (Nby2 counter==N/2)
AND (NN counter==NN));
}.

C. Address Generators for Convolution Kernel
When an input sequence of length N is convolved with an

impulse response of length M , the output sequence is of length

Reset

Offset_Addr_Reg
CLK Reset

Ld

CLK

Addr_Gen_En

1
Bf_Br_bar

Bf_Br_Add_Sub

Add_bar_Sub

1

Reset

CLK

00..00

Up Ld

Reset
Counter

0

1

1

M−2

Comparator

M−1

Correction

Fig. 6. Hardware schematic of AGU for data fetch of convolution kernel

N + M − 1. The address generation scheme assumes that the
given data is padded with M − 1 zeroes at both ends. For
example we have 3 data points x(n) with pad data, 2 sample
points of impulse response h(n); resulting in 4 output values
y(n). The sample points of impulse response are stored in a
reverse order in the memory. Table I summarizes the sequence
of addresses to be generated for fetching the data, coefficients
and storing the result.

TABLE I
SEQUENCE OF ADDRESS GENERATED FOR CONVOLUTION KERNEL

Address sequence Corresponding values
x(n) h(n) y(n) x(n) h(n) y(n)
0, 1 0, 1 0 x-1, x0 h1, h0 y0
1, 2 0, 1 1 x0, x1 h1, h0 y1
2, 3 0, 1 2 x1, x2 h1, h0 y2
3, 4 0, 1 3 x2, x3 h1, h0 y3

The sequence of addresses for fetching coefficients follows
a Modulo-M pattern and that for writing the convolution result
Divide-by-M.

1) Address Generator for fetching data for convolution:
The algorithm for generating the address can be summarized
as follows:

Reset: Reset Counter; Reset Offset Address Register;
Begin: If Counter = M − 1

Then Correction = −(M − 2); Counter = 0;
Else Correction = 1;

Offset=Current Offset + Correction;
Goto Begin;.

The hardware schematic for the above AGU is shown in
Fig. 6.

328

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 02,2021 at 11:36:45 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Fig. 7. Sequence of addresses generated in zig-zag addressing mode.

2) Address Generator for accessing filter coefficients in
convolution: The algorithm for generating the addresses for
fetching coefficients is of Modulo N type and is similar to that
of data fetch for convolution except the correction is −(N−1)
whenever the counter reaches a value of N − 1.

3) Address Generator for accessing convolved data write-
back: The algorithm for generating the addresses for result
storage is of Divide by N type and is similar to that of
coefficient fetch for convolution except the correction is ‘0’
when the counter value is less than N−1 and correction is ‘1’
when counter value is equal to N−1.

D. Zig-zag Address Generation for accessing N × N pixel
array

JPEG uses Entropy coding for compressing the data after
performing DCT and Quantization. After computing the 2D -
DCT of a N × N image, it can be seen that the significant
coefficients are present in top-left corner of 2D matrix. For
compressing the coefficients further, it is necessary to process
only these coefficients.

Entropy coding requires the quantized data of NxN pixel
array to be read in zig-zag fashion as shown by the sequence of
arrows in Fig. 7. An algorithm has been developed to generate
this address sequence for any value of NxN (N being even),
hardware developed, simulated, tested and the block schematic
is as shown in Fig. 8. The algorithm can be summarized as
follows:

Reset: Reset Row counter; Reset Column counter;
Reset Offset Address Register;

Begin: If ((!cond1) AND (!cond2)) Then Correction=N-1;
If ((!cond1) AND (cond2)) Then Correction=N;
If (cond1) Then Correction=1;
If (cond3) Then Offset=Cur Offset-Correction;

Else Offset=Cur Offset+Correction;
If (cond4) Then Column counter up enable;
If (cond5) Then Column counter down enable;
If (cond6) Then Row counter up enable;
If (cond7) Then Row counter down enable;
Goto Begin;.

cond1 to cond7 check if the counter value pair has reached
the boundary of the pixel array map and hence a change of
direction in scanning is required.

Adder / Subtractor
Add_bar_Sub

Offset

Offset_Addr_Reg

cond1 cond2

Correction
Generate LogicN

Control Logic

co
nd

4

co
nd

6

co
nd

7

Up

Down Down

Up
Column Counter Row Counter

co
nd

5

co
nd

3 Correction

Fig. 8. Block schematic of hardware used for zig-zag address generation

III. RESULTS AND CONCLUSION

Efficient Address Generation Algorithms and hardware suit-
able for speeding up execution of DSP kernels using DRDPs
have been developed. A novel algorithm for Bit Reversed
Address Generation for N -point FFT capable of generating
address sequence for Butterfly computations over Nlog2N
stages in Nlog2N +4 clock cycles has been developed. Algo-
rithm for fetching the FFT twiddle factors in synchronization
with the data fetch has also been developed. Sample simulation
result of a 8-point FFT kernel with DIF approach, implemented
on datapath using 4 DRDPs being chained; completes the
operation in 28 clock cycles as shown in Fig. 9. Convolution
kernel has been implemented using a single DRDP and Fig. 10
shows the simulation results of 5 data points convolved with
impulse response of length 4; operation being completed in
((N + M −1)×M) + 3 clock cycles. These prove the efficacy
of the AGUs developed, the ability to synchronize the data
access and computation of result using the DRDPs in case
of a 8-point DIF FFT kernel and Convolution kernel. Efficient
algorithm and hardware for address generation to fetch data in
a zig-zag sequence as required by Entropy coding after DCT
operation is also developed.

The algorithms have been implemented in VHDL in a
fully structured coding style. The data width and the address
width are parameterizable. The coding completely adheres to
structural style and the algorithm is using components that
scale linearly in terms of complexity of number of transistors
in the hardware. All the algorithms have been simulated and
tested. Due to a structured approach and shared common
components in the AGU for various addressing modes, a mi-
croprogrammed controller that can handle various addressing

329

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 02,2021 at 11:36:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Simulation result of a 8-point FFT kernel

Fig. 10. Simulation result of a convolution kernel

modes required by DSP kernels can be implemented; leading
to a Reconfigurable AGU.

REFERENCES

[1] Hulina P T, Coraor L D, Kurien L, and John E, “Design and VLSI
Implementation of an Address Generation Coprocessor,” IEE Proceedings
on Computers and Digital Techniques vol. 142, no. 2, pp. 145-151, March
1995.

[2] Angelo A. Yong, “A Better FFT Bit-Reversal Algorithm Without Tables,”
IEEE Transactions on Signal Processing, vol. 39, no. 10, pp. 2365-2367,
October 1991.

[3] James S Walker, “A New Bit Reversal Algorithm,” IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 38. no. 8, pp: 1472-1473,
August 1990.

[4] Evans David M W, “A Second Improved Digit-Reversal Permutation
Algorithm for Fast Transforms,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 37. no. 8, pp: 1288-1291, August 1989.

[5] Jeffrey J Rodriguez, “An Improved FFT Digit-Reversal Algorithm,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 37. no.
8, pp: 1298-1300, August 1989.

[6] E O Nwachukwu, “Address Generation in an Array Processor,” IEEE
Transactions on Computers, vol. c-34, no. 2, pp: 170-173, February 1985.

[7] Ayan Banerjee, Anindya Sundar Dhar, and Swapna Banerjee, “FPGA
realization of a CORDIC based FFT processor for biomedical signal
processing,” Elsevier Science - Microprocessors and Microsystems, vol.
25, pp: 131-142, February, 2001

[8] Thomas R Harley and G P Maheshwaramurthy, “Address Generators for
Mapping Arrays in Bit-Reversed Order,” IEEE Transactions on Signal
Processing, vol. 52, no. 8, pp: 1693-1703, June 2004.

330

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 02,2021 at 11:36:45 UTC from IEEE Xplore. Restrictions apply.

