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Abstract— We consider the problem of distributed partition-
ing of an environment by a set of robots so that each robot
performs its operations in the region within the corresponding
cell. Voronoi partitioning is one of the most attractive techniques
that has been used to solve this problem. It has been used in
several distributed multi-robotic system and sensor network
applications, such as sensor coverage, search and rescue, and
coverage path planning. For a truly distributed implementation
of such problems, each robot should be able to compute the
corresponding Voronoi cell in a distributed manner. Further,
in a practical application, the robots’ sensors may have limited
range, thus each robot may operate within a portion of its
Voronoi cell constrained by the sensor range. We describe a
distributed algorithm for computation of this range constrained
Voronoi cell where each robot independently constructs chords
corresponding to other robots that are within a distance of twice
its sensor circle radius. A robot then uses a simple and fast
technique to remove inessential chords to calculate the vertices
of its Voronoi cell. We prove completeness and correctness of
the proposed algorithm, and also provide the upper and lower
bounds on the computational complexity of our algorithm. The
theoretical results are validated with the help of experiments to
show that for different values of sensor ranges, our proposed
algorithm incurs a time complexity that is significantly lower
than that of the existing full Voronoi partition computation
algorithm. The maximum number of steps required by our
algorithm is also shown to be within a constant times the lower
bound given by the number of neighbors of each node.

I. INTRODUCTION

Voronoi partitioning has been used as a popular technique

to partition the space in which a set of robots or sensor nodes

are deployed. Different domains where Voronoi partitioning

and its variants have been used include sensor coverage

[1], [2], [3], [4], [5], [6], [7], search with multiple robots

[8], [9], and complete coverage using multiple robots [10].

For a successful distributed implementation of the Voronoi

partitioning problem, each robot should be able to compute

the corresponding Voronoi cell autonomously. In the con-

ventional method to calculate the Voronoi cell, each robot

first uses the positions of all other robots in the environment

to compute the entire Voronoi partition, and, then, extracts

its Voronoi cell. Computing the entire Voronoi partition is

not very efficient as each robot unnecessarily calculates the
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Voronoi cell for every other robot. In most practical situa-

tions, robots may not have information about the positions

of all other robots in the environment, e.g., when subsets of

robots are outside each others’ communication range. In such

a situation, it is not possible to compute the exact Voronoi

cells in a distributed manner. However, there are several

multi-robotic applications [1], [2], [8], [9] where each robot

is responsible for performing operations within the portion

of its Voronoi cell that lies within the range of the sensor(s)

it uses to perceive its environment (e.g., camera, laser or IR

sensor). Therefore, it makes sense to study the problem of

distributed Voronoi partitioning in a sensor range constrained

scenario. In this paper we describe a distributed algorithm

where each robot in a multi-robot system autonomously

computes its corresponding Voronoi cell within such a sensor

range constrained scenario. To do this, each robot uses only

the positions of the robots that are within a distance of double

its sensor range, provided that the robot’s communication

range is at least double its sensor range. In our proposed

technique, each robot represents the information about the

positions of robots within its communication range in a

polar coordinate system with its own position as reference.

We provide theoretical results validating that our algorithm

successfully calculates the sensor range constrained Voronoi

cell for each robot. The theoretical results are validated with

the help of experiments.

II. RELATED WORK

Computation of the complete Voronoi partition is a stan-

dard problem addressed in computational geometry [11].

Calculation of the Voronoi partition requires the underlying

communication graph of the nodes to be connected. There are

only a few existing techniques that employ a distributed com-

putation of the Voronoi cell. In [12], an approximate Voronoi

cell is constructed for each node using its four closest nodes,

one from each quadrant. If this approximate Voronoi cell is

not a polygon, a node located in the unbounded region is

chosen randomly to get an approximate Voronoi cell. A filter-

and-refine algorithm is presented in [13], where in the first

phase, the sensor node computes an approximate Voronoi

cell based on the nodes within its radio range. If this cell

computed by a node is not bounded and the node is in

the interior of the convex hull formed by all the nodes,

messages are sent by the node in the direction of points

that would close the cell. Once a node’s cell is closed, it

refines the cell by communicating with other nodes within

an impact range. In [14], the authors consider a bounded

region and an initial node set as a subset of the entire node
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set that yields a bounded Voronoi cell. Then a geographic

routing protocol called GPSR is used to probe for nodes

that reduce the initial Voronoi cell and refine it. A similar

approach is used in [15], where the sensors cooperate to

refine the Voronoi cell and achieve a faster convergence.

The first phase of these algorithms constructs approximate

candidate Voronoi cells based on a small number of nodes

while using a ‘brute force’ approach [13]. Also, the existing

algorithms rely on communication protocols to exchange

positional information on demand. In contrast our work

requires robots to exchange positional information with each

other only at the beginning of the algorithm. Cortes et al.

[1], [2] presented a distributed algorithm for computation of

both exact and range-constrained Voronoi cells, which was

based on an algorithm by Cao and Hadjicostis [16]. The

robot constructs its Voronoi cell by incrementally increasing

its sensing radius. In contrast to most of the existing literature

in this area, which compute Voronoi cells based on the

position of all other robots/sensor motes (or nodes) in the

environment, we address the problem of computing only

the portion of the Voronoi cell that lies within each robot’s

sensor range, without using information about the positions

of all other nodes. Although it is possible for each robot

to compute its Voronoi cell based on the positions of all

other robots if that information is available, and then discard

the portions of the cell that are outside its sensor range,

this is not a very efficient method for calculating the range

constrained Voronoi cell. Further, in our proposed algorithm,

every robot represents the relative position of other robots

using a polar coordinate system, which enables a more

structured construction of the Voronoi cell and reduces the

amount of computation. Although, our proposed algorithm

constructs the Voronoi cell incrementally by increasing the

(pseudo) sensing range as in [1], [2], [16], it differs in this

use of relative positions using polar coordinates, and, in a

more systematic and efficient construction of the candidate

Voronoi cells.

III. PROBLEM FORMULATION

Consider N robots in a multi-robot system (MRS)

(or multi-agent system, sensor network). Let P =
{p1, p2, . . . , pN} be the configuration of the MRS, where

pi ∈ R
2 is the position of the i-th robot. Let IN =

{1, 2, . . . , N} be an index set. By a slight abuse of notation,

we use pi to refer to both the i-th robot and its position in the

space. Let PR
i = {pj | ‖pj−pi‖ < R, j ∈ IN \{pi}} ⊆ P .

Let V = {Vi|i ∈ IN} be the Voronoi partition generated by

P as a node set, with

Vi(P) = {q|‖pi − q‖ ≤ ‖pj − q‖, ∀j ∈ IN}

Nodes i and j are considered Voronoi neighbors or neighbors

in the Delaunay graph GD(P), if the corresponding Voronoi

cells Vi and Vj share a common edge. Let ND(P, pi) be the

set of neighbors of pi in GD(P).
For i-th robot having a sensor with a range of R, the

range-constrained Voronoi cell (RCVC) is defined as V R
i =

Vi∩B̄(pi, R). See Figure 1 for illustration. Two robots pi and
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Fig. 1. The range-constrained Voronoi cell V R
1

is shown bounded with

dark lines. Node p7 contributes to V1, but not to V R
1

.

pj are said to be neighbors in GLD(P, 2R), the 2R-limited

Delaunay graph, if V R
i and V R

j share a common edge [1]. Let

NLD(P, 2R, pi) be the set of neighbors of pi in GLD(P, 2R).
Problem statement: For each i ∈ IN , given P2R

i , the i-th
robot should compute the corresponding range-constrained

Voronoi cell V R
i , and the neighbors in GLD(P, 2R).

Lemma 1: For a given configuration P, V R
i (P) =

V R
i (P2R

i ).
Proof. Let us assume that pj 6∈ P

2R
i and pj ∈ ND(P, pi).

The perpendicular bisector of line joining pi and pj does

not intersect C(pi, R), the circle of radius R, centered at

pi. Thus, pj 6∈ NLD(P, 2R, pi). Now as NLD(P, 2R, pi) ⊆
ND(P, pi), if a node pk 6∈ P

2R
i is such that pk 6∈ ND(P, pi),

then pk 6∈ NLD(P, 2R, pi). �

IV. COMPUTATION OF RANGE-CONSTRAINED VORONOI

CELL

The Voronoi cell Vi and range-constrained Voronoi cell

(RCVC) V R
i , of robot located at pi, depend on the positions

and orientations of the other robots. While calculating the

Voronoi cell of each robot, selecting the set of its Voronoi

neighbors based on Euclidean distances with positions of

robots represented in Cartesian coordinates might lead to

complicated analysis and calculations. For example, in Fig-

ure 2(a), robots q1 and q2 are the Voronoi neighbors for robot

q0. Robots q3 and q4 are equidistant from q0 but it is easy to

see that q3 is not q0’s Voronoi neighbor, while q4 could be

a Voronoi neighbor, depending on the relative position and

orientation of other robots. In contrast, representing relative

robot positions using a polar coordinate system provides a

more succinct way to enable the computation of Voronoi

cells.

By Lemma 1, the i-the robot only needs P2R
i to compute

V R
i . Thus the communication range of robots should be

at least 2R. The i-th robot, pi, constructs an ordered set

of robots to represent the configuration of robots in P2R
i

in the polar coordinate space with itself as the origin. The

set iQ = {iq1,
i q2, . . . ,

i qN−1} contains the robots that are
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Fig. 2. a) Motivation for using relative configuration in polar coordinate
system. b) The robot pi re-indexes all robots based on the relative position
in a polar coordinate system with pi = q0 as center.

within a distance of 2R from pi, sorted in order of increasing

distances (radii) from pi. Ties in radii are broken by ordering

the robots equidistant from pi in increasing order of angles

with the line joining pi and iq1, the closest robot to pi. If

more than one robot lie at the shortest distance from pi,
then one of these robots is randomly chosen as q1

1. For

the sake of legibility, we rename robot pi as q0. An example

illustrating the construction of the sets iQ is illustrated in

Figure 2(b). With q0(= pi) as center, let iC1,
i C2, . . .

i CK ,

K ≤ N−1, denote virtual circles of increasing radii passing

through one or more robots in iQ; circle iC1 passes through
iq1 and so on. Let irk be the radius of circle iCk. In the

following, when the context is unambiguous, we drop the

superscript i to simplify the notation and refer to iqj as qj ,
iCk as Ck, and irk as rk. For brevity, we use qk to refer

to both the robot itself and its position. Further, by a slight

abuse of notation, we use notation Ck to refer to both the

virtual circle, and the set of robots on the circle Ck.

The i-th robot has access only to B̄(pi, R), the closed

disc of radius R centered at pi. We denote circle of radius

R centered at pi as iCR or simply CR. If there are no

robots within a distance of 2R, then V R
i = B̄(pi, R). Let

Ri be pseudo-communication range. We call Ri as pseudo

communication range, as this limit on the range is only used

for the purpose of computation, and not the real limitation

of the robot. The i-th robot computes the Voronoi cell

starting with Ri(1) = r1, and expands the communication

range incrementally by setting Ri(k) = rk at k-th step,

while contracting the range-constrained Voronoi cell. The

procedure is discussed formally in the following.

Let Nk be the number of robots on Ck, k ∈ IK and Nk =
N1 + N2 + · · · + Nk be the number of robots on or inside

Ck. Note that in non-degenerate conditions, Nk ≤ 3, ∀k ∈
IK . Let H(q0, p) be the half plane defined by perpendicular

bisector of q0 ↔ p containing q0.

When the context is clear, for brevity, we denote V R
i as

V R, and V R(Prk) as kV R. The robot starts with Ri(0) = 0

1It is easy to show that all such robots are Voronoi neighbors of pi.

1
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Fig. 3. Illustration of evolution of the range-constrained Voronoi cell as the
pseudo communication range (circle shown with dashed line) is increased.

and 0V R = B̄(q0, R). At the k-th step,

kV R =k−1 V R ∩ {
⋃

pj∈Ck

H(q0, ql)}, k ∈ IK (1)

Figure 3 illustrates the evolution of range-constrained

Voronoi cell as the pseudo communication range is increased

in steps. The computation of the RCVC proceeds in three

phases that are described below.

Phase 1: Chord construction: The boundary of kV R is made

up of line segments corresponding to perpendicular bisectors

and arcs on the circle CR. First we look at the intersection

of b0j , the perpendicular bisector of line joining q0 and qj
(j-th node on Q, the relative configuration sorted based on

radius) with the circle CR. Let the points of intersection of

b0j with CR be (R, θsj ) and (R, θej ). Since R is known, we

need to find only θsj and θej , which are given by:

θsj = mod 2π(θj + δθj)
θej = mod 2π(θj − δθj)

(2)

where, δθj = cos−1
( rj
2R

)

. This is illustrated in Figure

4(a). Let Lj denote the segment of b0j that lies between

(R, θsj ) and (R, θej ). Note that Lj forms a chord within

CR corresponding to qj . A segment of Lj ∈ ∂V R if and

only if qj ∈ NLD(P, 2R, pi), where ∂V R represents the

boundary of V R. Further note that, if pj ∈ P
2R
i ∩ND(P, pi),

then qj ∈ NLD(P, 2R, pi). Starting with C1, the i-th robot

computing V R
i constructs the chords corresponding to robots

in Q in successive virtual circles and stores them in a set
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Fig. 4. a) Intersection of the perpendicular bisector of (q0, qj) and the

circle CR gives rise to the chord Lj and the half-plane induced by qj
containing q0. b) The chord L2 is removed by CheckChords method, as it
does not contribute to V R.

denoted by L. The cumulative set of chords L at the k-th

virtual circle Ck is the given by:

L = L ∪j∈{l|ql∈Ck} Lj .

The constructChords method shown in Algorithm 1 is used

to constructing chords. It takes Q, the set of robots that are

in P2R
i as input and returns the angle-sorted set chords L

corresponding to each qj ∈ Q. It also constructs a sorted set

Θ containing the polar angles of the endpoints of every chord

in L, which is used in the next phase of the construction of

the RCVC .

Phase 2: Removing Redundant Chords: Let Lj , Lk ∈ L
denote two chords corresponding to points qj and qk re-

spectively. If Lk lies entirely within the half-plane of Lj

that does not contain pi, then Lk /∈ ∂V R. As illustrated in

Figure 4(b), L2(= Lk) is entirely within the half-plane of

L1(= Lj) that does not contain pi. In such a case, Lk is

constructChords(Q)

Input: Q// Q the relative configuration of robots in

P2R
i in polar coordinates with pi as reference

and sorted based on radii.

Output: L,Θ, // L: set of chords corresponding to

nodes in Q, Θ: set of endpoints of chords in L
within CR

L ← ∅; Θ← ∅;
foreach qj ∈ Q do

Lj ← Perp. bisector of line (q0, qj) : qj ∈ Q;

(θsj , θ
e
j )← Angles of extremities of chord Lj with

q0 within circle C(q0, R) of radius R;

L ← L ∪ Lj ;

Θ← Θ ∪ {θsj , θ
e
j}

end

Sort L in ascending order of angle of corresponding

nodes;

Sort Θ in ascending order;

return L,Θ;
Algorithm 1: Method for constructing chords for robots

(nodes) that are within twice the sensor range of robot i.

(a) (b)

Fig. 5. a) V R can be calculated by finding the vertices corresponding to
the intersection points of consecutive chords returned by checkChords b) A
scenario where two consecutive chords L3 and L1 do not intersect within
CR = B̄(pi, R).

redundant for the construction of V R and can be omitted

from further calculations related to V R by removing it from

L. The checkChords method shown in Algorithm 2 is used

to remove redundant chords in L. To do this, for every chord

Lj ∈ L, it inspects the set of endpoints of other chords lying

in the half-plane of Lj (on the circumference of CR) not

containing pi. If the set of other chords’ endpoints contains

both extremities of any chord Lm, then Lm is a redundant

chord and it is removed from L. The checkChords method

removes all such redundant chords and returns a reduced set

of chords for the next phase of the RCVC computation.

Phase 3: Vertex computation and refinement: The final step

in finding the RCVC V R for robot pi is to determine the

vertex set corresponding to the Voronoi cell of robot pi.
Recall that the set of chords returned by checkChords is

ordered by the polar angles of the chords’ corresponding qj
node. Therefore, it seems intuitive that V R can be computed

by finding the intersection point of consecutive chords while

cycling through once over the angle-ordered set of chords

returned by the checkChords method. Figure 5(a) shows a

scenario where four chords L1 through L4 are returned by

checkChords method and the vertices of V R are computed

by finding the intersection points of consecutive pairs of

chords. For two consecutive chords, Lj and Lk, that intersect

at a point, we refer to Lj as the preceding chord and Lk

as the succeeding chord. Lj and Lk’s intersection point

vj = (r(vj), θ(vj)) (in polar coordinates) can be computed

as follows:

φj = atan2(cos(θk − θj)−
rk
rj
, sin(θk − θj))

θ(vj) = θj + φj

r(vj) =
rj

2 cos(φj)

(3)

The vertex at the intersection point of two chords (lines)

is indexed with a marker called ‘line’. The pseudo-code

for finding the vertices of V R is given in the constructVor

method shown in Algorithm 3.

However, there are two wrinkles to this method that make

finding the RCVC a bit involved. First, two consecutive

chords might intersect outside the sensor range R of robot pi
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as shown in Figure 5(b). It is easy to detect such a scenario by

inspecting the pair of extremities of two consecutive chords

- if neither of the extremities of the succeeding chord lie

within the half-plane of the preceding chord not containing

pi, the chords do not intersect within CR. For example, in

Figure 5(b), neither of L1’s extremities lie in the half-plane

of L3 not containing pi. In this case, the vertices of the

Voronoi cell generated by these two chords are calculated as

the intersection points of the chords with CR as shown in

Figure 5(b). These vertices are indexed with a marker called

‘circ’ to distinguish them from vertices at which two lines

intersect.

The second wrinkle while finding chord intersection points

arises from the fact that two chords that are not consecutive

might intersect with each other and give rise to a self-

intersecting polygon. As shown in Figure 6(b), Lk, Lj and

Ll are three consecutive chords. The intersection point of

(Lk, Lj) is at v1 and the intersection point of (Lj , Ll) is

at v2. However, v1 and v2 give rise to a self-intersecting

polygon. In this case, v1 and v2 need to be discarded along

with Lj and the intersection of Lk and Ll has to be computed

as a valid vertex of V R. To check for the self-intersecting

polygon case, a newly formed vertex is checked with the

preceding vertex for acceptability. Let Lk, Lj , Ll be three

consecutive angle sorted chords. Let v1 be the point of

intersection of Lk and Lj , and v2, that of Lj and Ll. For two

polar angles a, b ∈ [0, 2π], define ∆(a, b) as the following

function:

∆(a, b) =

{

| a− b | if | a− b |≤ π
2π− | a− b | if | a− b |> π

Now let ∆θ1 = ∆(θ(v1), θ
e
j ) and ∆θ2 = ∆(θ(v2), θ

e
j ).

The vertex v2 is accepted with respect to v1 only if ∆θ2 >
∆θ1, as shown in Figure 6(a). If ∆θ2 < ∆θ1 the vertex v2
is not accepted, as in Figure 6(b). In this case, the chord

Lj is discarded as it does not contribute to V R. As a final

note, the chord corresponding to robot q1 that is closest to

pi must be part of V R. Therefore, it makes sense to start

checking chords from the chord corresponding to robot q1
as that chord can never get removed while remedying an

instance of the self-intersecting polygon problem.

The algorithm for constructing the RCVC of pi is called

RangeConstrainedVor. It first calculates the set of robots

Q that are in P2R
i . It then calls the constructChords(),

checkChords() and constructVor() methods sequentially to

calculate V R
i . Every robot pi ∈ P uses the RangeCon-

strainedVor algorithm independently to calculate its Voronoi

cell in a distributed manner.

Lemma 2: Let L1 be the set of chords at the end check-

Chords method.

NLD(P, 2R, pi) = NLD(P2R
i , 2R, pi) ⊆ {qj |Lj ∈ L1}

Proof. Let L be the chord set before checkChords method,

which contains chords corresponding to all pj ∈ P
2R
i . A

chord Lj is removed from L by the checkChords method,

only when ∃Lk ∈ L, s.t. both end points of Lj represented

by θsj and θej , lie in the range (θek, θ
s
k), which is the portion

Lk

Lj

v1

v2

Ll

j
e

θ

∆θ1

∆θ2

(a)

Lk

Lj

v1

v2

Ll

j
e

θ

∆θ1

∆θ2

(b)

Fig. 6. Illustration of condition for (a) accepting and (b) discarding a
vertex formed by intersection of two successive chords in L.

checkChords(Θ,L)

Input: Θ,L; // L: angle-sorted list of chords in circle

CR, Θ: sorted list of endpoints of chords in L
Output: L,Θ// refined set of chords and chord

endpoints

foreach (θsj , θ
e
j ) ∈ Θ do

Θdiff ← ordered set of endpoints of chords lying

between (θej , θ
s
j ) in Θ;

if ∃m s.t. θsm ∧ θem ∈ Θdiff then
L ← L \ {Lm};
Θ← Θ \ {θsm, θem};

end

end

return L,Θ;
Algorithm 2: Method used to remove non-intersecting

chords which are not contributing to V R.

of half plane corresponding to Lk, not containing pi, within

CR. Thus, Lj lies outside V R and hence does not contribute

to V R and hence corresponding node qj 6∈ NLD(P, 2R, pi).
�

Lemma 3: Let L2 be the set of chords remaining at the

end of constructVor method.

NLD(pi, R,P) = NLD(pi, R,P2R
i ) = {qj |Lj ∈ L2}

Proof. Lj ∈ L1 is removed from the chord list in con-

structVor method only if the point of intersection of Lj

and Lj.next() is on the portion of Lj which is in the half

plane corresponding to Lj.prev(), the chord preceding Lj , not

containing pi, thus lying outside V R (see Figure 6). In such

a situation, as illustrated in Figure 6(b), Lj∩H(p0, qj.next())∩
H(p0, pj.prev())∩C

R = ∅, and hence Lj does not contribute

to V R. Thus, if Lj is removed from the chord list, it does

not contribute to V R, and hence qj 6∈ NLD(pi, R,P).
Now let qj 6∈ NLD(P, 2R, pi). If Lj 6∈ L1, then Lj 6∈
L2. Now, if Lj ∈ L1, ∃Lk ∈ L2 s.t, chords Lk and Lj

intersect. It is clear that if no other chords in L2 intersect

Lk, then qj ∈ NLD(P, 2R, pi), hence, there exists at least

one chord, say Lm, which intersects Lk. Further, if there is

no chord Lm s.t. it intersects both Lk and Lj , then qj ∈
NLD(pi, R,P). Hence, ∃Lm which intersects both Lk and

Lm. Now, if the vertex formed by Lk and Lj , v(Lk, Lj) ∈
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ConstructVor(L,Θ)

Input: L,Θ; L: refined set of chords (angle-sorted)

returned by checkChords, Θ: angle-sorted

extremities of chords in L
Output: V R;// ordered set of vertices of RCVC

V R ← ∅; // Initialize V R as B̄(q0, R).
if L 6= ∅ then

∆θ1 ← 0; ∆θ2 ← 0; j ← 1;

while (j 6= 1) or (|V R| == 0) do

if θe
j.next() lies between θej and θsj then

// consecutive chords intersect

// next() gives the index of the next chord in

L with wrap around

v ← findIntersection(Lj , Lj.next());

if |(V R)| ≥ 2 then
∆θ1 = ∆(θ(v.prev())− θej );
// v.prev is the previous vertex in V R

∆θ2 = ∆(θ(v)− θej );
if ∆θ2 > ∆θ1 then

// not self-intersecting polygon,

calculate vertex

V R ← V R ∪ (v, ‘line’);
j ← j.next();

end

else
// self-intersecting polygon case //

remove Lj , θ
e
j , θ

s
j

L ← L \ {Lj}; Θ← Θ \ {θej , θ
s
j};

end

end

end

else
// chords do not intersect each other

v1 = (R, θsj );
v2 = (R, θe

j.next());

V R ← V R ∪ {(v1, ‘circ’), (v2, ‘circ’)};
j ← j.next();

end

end

end

return V R;
Algorithm 3: Algorithm used to calculate the vertices of

V R.

H(p0, pk) ∩ H(p0, pm) ∩ CR, then qj ∈ NLD(P, 2R, pi).
Hence, v(Lk, Lj) 6∈ H(p0, pk)∩H(p0, pm)∩CR, leading to

the condition in constructVor, which removes the chord Lj

(see Figure 6(b)). That is, if qj 6∈ NLD(P, 2R, pi), then the

corresponding chord is removed.

Thus, a chord Lj ∈ L2, if and only if qj ∈
NLD(P, 2R, pi). Thus, {qj |Lj ∈ L2} = NLD(P, 2R, pi).
�

Theorem 1: The region created by the RangeConstrained-

Vor algorithm is V R, the range-constrained Voronoi cell.

Proof. Follows from Lemmas 2 and 3. �

Theorem 2: The algorithm RangeConstrainedVor termi-

nates in finite time.

−150 −100 −50 0 50 100
−100

−50

0

50

100

150

Fig. 7. Range constrained Voronoi cell of point shown with ‘*’, with a
sensor range of 75 units, computed using the proposed RangeConstrainedVor
algorithm. The positions of other robots are shown with dots.

Proof. The proof is trivial as there are finite number of

operations for each virtual circle, and there are a finite

number of virtual circles. �

V. COMPUTATIONAL COMPLEXITY

Computational complexity of the any Voronoi partition

computation is Ω(N logN), where N is the number of nodes

(robots) [11]. Thus, the lower bound of computing V R
i by

computing Voronoi partition is Ω(N logN). In contrast, we

compute V R
i directly without computing Voronoi partition. It

is easy to show that the complexity of computing V R
i using

the RangeConstrainedVor algorithm presented in this work

is O(M), where M = |P2R
i | ≤ N . Also, lower bound on

construction of V R
i using any algorithm is Ω(Ni), provided

the NLD(pi, R,P) is known. Complexity of constructVor is

O(M ′), where M ′ = |L1|, number of chords remaining after

the chckChords method, and M ′ ≤M ≤ N .

VI. RESULTS AND DISCUSSIONS

The proposed RangeConstrainedVor algorithm was im-

plemented using C++. Figure 7 shows a range constrained

Voronoi cell with R = 75 units. The Voronoi cell is

marked with darker border, while the chords remaining after

checkChords method are shown with thin lines. Part of the

circle of radius 2R centered at pi (marked with ‘*’) is shown

in dashed lines.

We performed simple experiments to compare aver-

age complexity with standard Voronoi partition algorithms

(O(N logN ) [11] and the lower bound of constructing

V R
i by any algorithm, that is Ω(Ni). We considered 25

randomly distributed robots and increased the sensor range

R from 10 to 225. For each R, 25 constrained Voronoi cells

corresponding to location of 25 robots are computed.

The quantity M(pi)/(N logN), where M(pi) = |P2R
i |

represents the ratio of computational complexity of pro-

posed RangeConstrainedVor algorithm w.r.t. the conven-

tional algorithms computing Voronoi partition (represented

by complexity O(N logN)). Figure VI shows the variation

of M(pi)/(N logN), averaged over 25 nodes, with sensor

range. It can be observed that at low sensor range, the
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Fig. 8. a) Computational complexity of RangeConstrainedVor algorithm
to compute the range constrained Voronoi cell in comparison to N logN ,
the computational complexity of conventional algorithms computing the
Voronoi partition. b) Performance of the constructVor method compared
with the lower bound of Ω(Ni) of construction V R, where Ni =
|NLD(P, 2R, pi)|.

computational complexity is much lower, which increases

with the sensor range (M increases with increase in R).

The average value of M(pi)/(N logN) reaches a maximum

value of about 0.2 at higher sensor range, indicating, even

at large sensor range, when it is possible that V R
i =

Vi, the RangeConstrainedVor algorithm is substantially ef-

ficient computationally compared to algorithms computing

the entire Voronoi partition. Further, the maximum value of

M(pi)/(N logN) is less than 0.3.

The quantity M ′/Ni, where M ′ = |L1| and Ni =
|NLD(pi, R,P)|, provides a comparison of the computa-

tional complexity of the constructVor method with the lower

bound Ω(Ni) (when NLD(pi, R,P) is known, and V R needs

to be computed). Figure VI shows the variation of M ′/Ni,

averaged over 25 nodes, with the sensor range R. The

maximum average value is below 3, indicating that on an

average, constructVor has to handle at most three times more

number of chord intersection than Ni. The maximum value

of M ′/Ni is below 3.5.

VII. CONCLUSIONS

We proposed a truly distributed algorithm to compute the

range-constrained Voronoi cell for multi-robot/multi-agent

system and sensor-network applications. Each robot uses

a relative configuration of other robots within its sensor

range, in polar coordinate system. The pseudo-sensor range

is incremented in steps while the range-constrained Voronoi

cell gets contracted, finally to obtain the desired region.

It was shown that, if the communication range is at least

twice as large as the sensor range, the proposed algorithm

successfully computes the desired range-constrained Voronoi

cell. The theoretical results are validated with the help of

experiments to show that for different values of sensor

ranges, our proposed algorithm incurs a time complexity that

is significantly lower than that of the existing full Voronoi

cell computation algorithm. The maximum number of steps

required by our algorithm is also shown to be within a

constant times the lower bound given by the number of

neighbors of each node.
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