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Abstract 

Present article discusses a novel method for the computation of non-dimensional eigen frequencies of a three 

dimensional multilayered magneto-electro-elastic plates (MEE) with skewed edges. A finite element (FE) model is 

formulated using a layerwise shear deformation theory (LSDT) and coupled constitutive equations. The 

transformation matrices are derived to transform local degrees of freedom into the global degrees of freedom for the 

nodes lying on the skew edges. Effect of different width to thickness ratios on the multilayered MEE plate with 

skewed edges is studied in detail. Particular attention has been paid to investigate the effect of various skew angles 

and stacking sequence on the non-dimensional eigen frequencies of multilayered MEE plate with simply supported 

boundary conditions. 
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1. Introduction 

With growing demand for smarter composite structures in aerospace, marine application, sensors and actuators the 

studies related to multilayered smart composites involved in smart structures have captured much attention of the 

researchers recently. Such structural components with multilayered composites unveil several unique features. 

Hence, the structural response to the applied load has become an important research topic. Magneto-electro-elastic 

(MEE) composites are one amongst many smart structural composites composed of piezoelectric (BaTiO3) and 

magnetostrictve (CoFe2O4) materials.  The MEE composites facilitate conversion of energy between electric and 



2 Author name / Materials Today: Proceedings XX (2016) XXX–XXX 

magnetic fields, termed as magneto-electric effect which is absent in individual constituents of the MEE composite 

(i.e. Pure piezoelectric and magnetostrictive phases). Though many researchers have contributed to the studies on 

MEE composites, Suchtelen [1] was first to report the magneto-electric effect in MEE composite. Later, the study of 

structural behavior with more highlight on plates, shells and beams were well reported. Pan and co-researchers [2-4] 

extensively investigated the static and vibrational behaviour of layered and functionally graded (FG) MEE 

composite structures. Exact deformation analysis of fiber reinforced MEE thin plates with closed circuit electric 

restriction was evaluated analytically by Liu [5]. Free vibrations of three dimensional multilayered MEE for 

clamped boundary condition was thoroughly investigated by Chen et al [6]. Kattimani and Ray [7-9] investigated on 

the geometrically nonlinear vibration control of MEE plates and shells using 1-3 piezoelectric composite. Ding and 

Jiang [10] investigated the simply supported annular MEE plate using the boundary element method. Ramirez et al. 

[11] adopted a discrete layer model to study the free vibration behaviour of MEE laminates and graded plates. Feng 

and Su [12] investigated the dynamics of FG MEE plate containing an internal crack. Simões [13] reported the static 

and free vibration of MEE plates using a higher - order model. Alaimo [14] discussed a novel FE formulation to 

study the large deflections in MEE multilayered plates. The semi-analytical solutions were developed by Xin and 

Hu [15] for the free vibration studies of multilayered MEE plates. Shooshtari and Razavi [16] studied the nonlinear 

free and forced vibration of a transversely isotropic rectangular MEE thin plate. Jun et al. [17] employed a semi-

analytical model to investigate the deformations of MEE plate. Shooshtari and Razavi [18] investigated the free 

vibrations of MEE plate using Reddy’s third-order shear deformation theory. 

Plates and laminates with skewed edges find a prominent presence in many engineering applications. Composite 

plates with skewed edges exhibit high natural frequencies for the identical dimensions of the normal plate, thereby 

reducing the excess use of material. All these unique properties have been successful in attracting the attention of 

many researchers. Studies on free vibration of plates with skewed edges have been extensively carried out. Garg et 

al. [19] investigated vibration analysis of different skew laminates using a higher-order shear deformation theory. 

Kanasogi and Ray [20] have studied the active vibration control for different layups of the skew composite plate. 

The extensive literature review provides a larger insight over free vibration of MEE composite plates and laminated 

composite plates with skewed edges. However, multilayered MEE plates with skewed edges has not been 

investigated and provides an ample scope for further research. It is noteworthy to mention that to the best of the 

author’s knowledge, the research concerning the three dimensional, multi-layered MEE plate with skewed edges has 

not been reported in the open literature. Hence, this paper presents the layerwise shear deformation theory (LSDT) 

to develop FE formulation for the free vibration studies of MEE plates with skewed edges. Effect of boundary 

condition, width to thickness ratio and stacking sequence on the free vibration behavior has been investigated 

thoroughly.  

2. Problem description and governing equation 

A schematic representation of  magneto-electro-elastic plate with skewed edges having length a, width b, total 

thickness H and skew angle α is depicted in Fig. 1. The multilayered MEE plate has the top and the bottom layers of 

similar material either CoFe2O4/ BaTiO3; while, the middle layer is of either BaTiO3/CoFe2O4. The Cartesian 

coordinate system is represented by (x, y, z) and (x1, y1, z1) are the local coordinates at skew angle α of the skewed 

MEE plate. The MEE plate with four stacking sequence is considered for the analysis. The layer stacking 

arrangement are pronounced as B/F/B, B/B/B, F/F/F and B/F/B/F/B in which B and F represent piezoelectric 

BaTiO3 (Barium titanate) and magnetostrictive CoFe2O4 (Cobalt ferrite), respectively. Here, B/B/B and F/F/F 

configuration are the pure piezoelectric and the pure piezomagnetic plates, respectively while B/F/B and B/F/B/F/B 

configuration corresponds to the MEE plates. 

2.2 Displacement field.  

The substrate plate is multilayered with combination of dissimilar materials. Therefore, layerwise shear deformation 

theory (LSDT) has been implemented in the analysis. Based on the LSDT, the displacement fields can be expressed 

as 

i 0i i

2
0 z z

u (x, y, z)  =  u (x, y) z  θ (x, y)

w(x, y, z)  =  w (x, y) z θ (x, y) z (x, y)                          



  
 

(1) 
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Fig. 1: Schematic representation of the MEE plate with skewed edges. 

where i = x and y, ux = u, uy = v, u0x = u0, u0y = v0. In the above displacement fields, u0, v0 and w0 are the mid-plane 

displacements of the MEE plate with skewed edges while,  θx and θy are shear displacements. θz and ζz refer to the 

rotational displacements about z- direction of the plate. As thin structures being more susceptible to shear locking, 

the strain component are considered separately for bending and shearing to study the effect of transverse shear 

deformation individually. The strain vectors associated with the displacement field in Eq. (1) at any point in the 

plate can be expressed as follows: 
k
b bt 1 rb{ } { } [R ]{ }     , k

s ts 2 rs{ } { } [R ]{ }    
 

 

wherein k represents the layer number for the plate, [R1] and [R2] defines the transformation matrices; while the 

strain vectors appearing in Eq. (2) are given as follows: 

0 0 0 0 0 0
bt ts

u v u v w w
{ }     0  , { }  and

x y y x x y

        
       

          

y 0x x
rb z z

v
{ }       θ   

x y x x

  
    

    
 

2.3 Constitutive equation 

The constitutive equations considering the effect of coupled fields, for the MEE plate with skewed edges can be 

written as 

k k k k k
b b b b z b z{σ } [Q ]{ } {e }E {q }H    , k k k

s s s{σ } [Q ]{ }    

k T k k
z b b 33 z 33 zD {e } { } E d H     

k T k k
z b b 33 z 33 zB {q } { } d E H      

where k  = 1, 2, 3 designates the layer number from the bottom layer to the top and   

(3a) 

(3b) 

(3c) 

(2) 
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where, k
b[Q ]  and k

s[Q ]  being the transformed coefficient matrices, 
k

33 , 33  and 33d  are the dielectric, the 

magnetic permeability and the electromagnetic coefficient, respectively. Dz, Ez, Bz and Hz represents the electric 

displacement, the electric field, the magnetic induction and the magnetic field respectively, k
b{e }  and k

b{q }

represents the electric coefficient matrix and the magnetic coefficient matrix, respectively. 

2.4 Governing equation 

Using the principle of virtual work, the governing equations for the MEE plate with skewed edges can be 

established as 

   
k k k t b

3
Tk k k k k k k k t t t b b b

b b s s t t z z z z

k = 1

{ }{σ }d { }{σ }d d d d E D d E D d

    

 
                 
 
 

     

m

m
z zH B d 0



     

where, Ω
k
 (k = 1, 2, 3) indicates the volume of the respective layer, ρ

k
 denotes the mass density of the k

th
 layer. The 

superscript t, b and m in the above equation represents the variables corresponding to the top, bottom and the middle 

layers of the MEE plate with skewed edges. The transverse electric field and the electric potential, the transverse 

magnetic field and the magnetic potential related correspondingly in accordance with the Maxwell’s equation. The 

interfaces between the piezoelectric and magnetostrictive layers are  assumed to be suitably grounded. As the MEE 

plate considered is very thin, the variation of the electric potential and the magnetic potential functions are assumed 

to be linear across the thickness.  

2.5 Skew boundary transformation 

For the skewed MEE plates, the displacements along the skew edges lying in the local coordinate need to be 

transformed into the global coordinate to facilitate the proper imposition of boundary conditions. The transformation 

is achieved by the relations given as follows:                        
1

t t t{d } [L ]{d } , 1
r r r{d } [L ]{d }  

1 1 1 1 T
t 0 0 0{d }  [u  v  w ]   , 1 1 1 1 1 T

r x y z z{d } [θ  θ  θ  ] 
 

 

War, rd  and, 1
rd  are the generalized displacements on the global and the local edge coordinate system, respectively. 

tS    and  rS  are the transformation matrices for a node on the skew boundary and are given by 

t

m n 0

S n m 0

0 0 1

 
 

     
  

,  r

m n 0 0

n m 0 0
S

0 0 1 0

0 0 0 1

 
 

 
 
 
 

  

where, m = cosα and n = sinα. It may be noted that the transformation is not required for the nodes not lying on the 

skew edges and the diagonal elements of the transformation matrices are considered to be unity for such cases. 

 

2.6 Free vibration behavior 
 

Using equations (2) - (8) the final global equations of motion are obtained as follows: 

(4) 

(6) 

(7) 

(8) 

(5) 
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 1 T
t 1 2 3 2 t t[M]{d } [K ] [K ][K ] [K ] {d } {F }    

t t t[M]{d } [K]{d } {F }   

and  1 T
1 2 3 2[K] [K ] [K ][K ] [K ]   

where, the global aggrandized matrices are given as follows: 

g g gg 1 T g g 1 g T
1 tt t tt t[K ] [k ] [k ][k ] [k ] [k ][k ] [k ] 

       , 

g g gg 1 T g g 1 g T
2 tr t rt r[K ] [k ] [k ][k ] [k ] [k ][k ] [k ] 

       , 

g g gg 1 T g g 1 g T
3 rr r rr r[K ] [k ] [k ][k ] [k ] [k ][k ] [k ] 

       . 

The eigenvalue problem can be formulated considering the global equations of motion in terms of global 

translational degrees of freedom as follows: 

[K] [M] 0   

where, [K] is the global stiffness matrix, [M] is the global mass matrix and λ is the eigenvalue ie., λ = ω2. 

3. Results and discussions 

The response of magneto-electro-elastic plate with skewed edges under simply supported boundary conditions are 

studied for free vibration behavior with various skew angles of the plate edges. The effect of stacking sequences and 

width to thickness ratio for different skew angles are presented. The mechanical properties of the constituent layers 

of the plate are considerd from chen et al.[6]. The MEE square plate of width a and length b is descritized into  4×4 

mesh constituting 16 elements. Eight node iso-parametric quadrilateral serendipity elements devised the 

descritization with three translational DOF; two rotational DOF and an electric and magnetic potential DOF at each 

node. The layer thickness is taken as 0.1 m, whereas the length and the width are considered 1 m. The total plate 

thickness is considerd to be same for all the stacking configuration. The non-dimensional natural frequencies are 

obtained using the relation  

max maxa / C    

 where,  a = Length of the plate; ρmax = Maximum density; Cmax = Maximum elastic constant. 

3.1 Validation  

The proposed FE model in the preceding section is verified with a semi-analytical model for the multilayered MEE 

plate [6]. The material properties are considered from Chen et al.[6]. The density of  Barium Titanate (BaTiO3) and 

Cobalt Ferrite (CoFe2O4) are taken as 5800 kg/m3. The normalized eigen modes for the clamped-clamped boundary 

condition of the multi-layered MEE plate are extracted from the present FE model and compared with the reference 

results in Table 1. To the author’s best knowledge free vibration analysis of MEE skew plates are not available in 

open literature. Hence to verify the effectiveness of the developed model for the skew plates, non-dimensional 

natural frequencies of the skew laminated composites obtained by Garg et al. [20] is considered and compared. The 

corresponding natural frequencies for the skew composite plates are listed in Table 2. It may be observed from 

Table 1 and 2 that, the results obtained using the present finite element formulation are in very good agreement with 

results reported by Chen et al.[6] and Garg et al.[20].  
 

3.2 Eigen frequencies evaluation of skewed MEE plates 
 

Having verified the present FE model with the  multilayered MEE plate [6] and for the skew laminated composite 

plates [20], the present FE formulation is extended for the three layered MEE plate with skewed edges composed of 

the piezoelectric layer on the top and bottom while the magnetostrictive layer in the middle. The stacking sequences 

(9) 

(10) 

(11) 
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considered for the analysis are B/F/B, B/B/B and F/F/F with B representing the piezoelectric material BaTiO3 and F 

represents magnetostrictive CoFe2O4. The B/B/B and F/F/F stacking configuration are considerd to emphasise the 

adaptability of the present FE model for the studies related to the pure piezoelectric and the pure piezomagnetic 

phases. The simply supported MEE plate with traction free surfaces on the top and the bottom is considered for the 

analysis. Table 3 and 4 enlist the non-dimensional eigen frequencies for B/F/B, B/B/B and F/F/F stacking 

sequences, respectively. It can be observed from the Table 3 that for the B/F/B stacking configuration eigen 

frequencies increase with the increase in skew angle of the MEE plate. Similar trend is observed for the B/B/B and 

F/F/F configurations in Table 4. It may also be observed from Table 3 and 4 that the eigen frequencies are higher for 

multi-phase and multilayered B/F/B stacking configuration over single phase B/B/B and F/F/F stacking 

configurations. Further, in order to study the effect of number of stacking layers, five layered B/F/B/F/B plate is also 

considered and the eigen frequencies are tabulated in Table 5. It may be noted that the number of layers has a 

significant effect on the eigen frequencies. It may also be noticed from Table 3 and 5 that the eigen frequencies of 

  F   plates are higher in comparision with that of   F   F   configuration for the skew angles above    . 

Table 1: Non-dimensional frequency parameter 2 2 1/2
2λ  ω b / π h (ρ/E )  for the clamped-clamped laminated composite 

plate (a/h=10). 

 

 

 

 

 

 

 

Table 2: Non-dimensional normalized natural frequency modes for clamped-clamped B/F/B plate. 

Non dimensional normalized natural frequency of B/F/B clamped-clamped plate max maxa / C    

Source 1 2 3 4 5 6 7 8 9 10 

Present 1.2685 2.0812 2.0812 2.6383 2.6383 2.7142 2.9750 3.0940 3.1286 3.5894 

Ref. [6] 1.3452 2.2231 2.2231 2.6178 2.6178 2.9404 2.9939 3.3123 3.3758 3.7729 
 

 Table 3: Variation of non-dimensional frequencies ( max maxa / C   ) for simply supported B/F/B MEE plate 

with skewed edges at different skew angles. 

Skew 

angle 

(α) 

Non dimensional normalized natural frequencies  for BFB under SSSS boundary condition with 

a = b = 1 

1 2 3 4 5 6 7 8 9 10 

0
0
 0.9412 1.2940 1.2940 1.8307 1.8728 1.8728 2.5515 2.5971 2.5971 2.9080 

15
0
 0.9925 1.3322 1.3487 1.8493 1.8773 2.0515 2.5720 2.6542 2.6866 2.8718 

30
0
 1.1679 1.4589 1.5420 1.9835 2.0316 2.4389 2.7093 2.8340 2.9846 2.9972 

45
0
 1.5497 1.7251 1.9793 2.3489 2.3556 3.0974 3.1865 3.1966 3.3864 3.6112 

60
0
 2.3060 2.3905 2.9802 3.0508 3.2060 3.9999 4.0945 4.3820 4.7572 4.8032 

75
0
 4.1483 4.9280 5.0075 5.8770 5.9404 6.9208 7.5477 7.8193 8.2420 8.8379 

 

 

Skew angle 

(α) 

Source 

 

Antisymmetric cross-ply 

(0
0
/90

0
/0

0
/90

0
) 

Symmetric cross-ply 

(90
0
/0

0
/90

0
/0

0
/90

0
) 

Modes Modes 

1 2 3 1 2 3 

 

0
0
 

Ref. [20] 2.2990 3.7880 3.7880 2.3687 3.5399 4.1122 

Present 2.2590 3.5213 4.2695 2.2400 3.3655 4.2382 

 

15
0
 

Ref. [20] 2.3809 3.7516 4.0785 2.4663 3.6255 4.3418 

Present 2.2992 3.4560 4.2841 2.2860 3.3637 4.2346 

 

30
0
 

Ref. [20] 2.6666 3.9851 4.7227 2.7921 3.9557 5.0220 

Present 2.4403 3.5067 4.3609 2.4396 3.4363 4.2949 

 

45
0
 

Ref. [20] 3.3015 4.6290 5.8423 3.4739 4.7129 5.8789 

Present 2.7348 3.7102 4.6270 2.7439 3.6545 4.6862 
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3.3 Effect of width to thickness ratio on eigen frequencies 
 

In this section, it is intended to study the effect of different width to thickness ratios on the non-dimensional eigen 

frequencies. The eigen frequencies for a h ratios of   , 1   and 2   corresponding to thin plates for the skew angle 

of α =     are tabulated in Table 6. From the tabulated results it may be observed that the eigen frequencies attain 

lower values for higher values of a/h ratios. 

Table 4: Variation of non-dimensional frequencies ( max maxa / C   ) for simply supported B/B/B MEE plate 

with skewed edges at different skew angles.  

Skew 

angle 

(α) 

Non dimensional normalized natural frequencies  for B/B/B and F/F/F under SSSS boundary 

condition with a = b = 1 

B/B/B F/F/F B/B/B F/F/F B/B/B F/F/F B/B/B F/F/F B/B/B F/F/F 

1 1 2 2 3 3 4 4 5 5 

0
0
 0.2772 0.3206 0.6196 0.6981 0.6196 0.6981 0.6313 0.7134 0.6313 0.7134 

15
0
 0.2977 0.3428 0.6235 0.7042 0.6377 0.7185 0.6435 0.7258 0.7091 0.7971 

30
0
 0.3684 0.4198 0.6872 0.7716 0.6976 0.7861 0.7257 0.8214 0.8846 0.9838 

45
0
 0.5278 0.5935 0.8224 0.9267 0.8593 0.9543 0.9054 1.0315 1.1059 1.2499 

60
0
 0.9088 1.0017 1.0892 1.2268 1.2724 1.3883 1.3019 1.4947 1.3933 1.5770 

75
0
 1.8969 2.1355 2.1444 2.2788 2.2066 2.5064 2.4356 2.7220 2.5673 2.7908 

Table 5: Variation of non-dimensional frequencies ( max maxa / C   ) for simply supported B/F/B/F/B MEE 

plate with skewed edges at different skew angles.  

Skew 

angle 

(α) 

Non dimensional normalized natural frequencies  for B/F/B/F/B under SSSS boundary condition 

with a = b = 1 

1 2 3 4 5 6 7 8 9 10 

0
0
 1.1999 1.2723 1.2723 1.7999 2.1204 2.1204 2.5530 2.5530 2.7430 2.8585 

15
0
 1.2500 1.3096 1.3257 1.8453 2.0960 2.2852 2.6060 2.6399 2.7596 2.8219 

30
0
 1.4185 1.4334 1.5147 1.9958 2.2153 2.6358 2.7760 2.8784 2.9298 2.9427 

45
0
 1.6935 1.7765 1.9425 2.3122 2.5433 3.1260 3.2198 3.3033 3.3215 3.5413 

60
0
 2.2611 2.5506 2.9227 2.9906 3.3162 3.9191 4.1083 4.2953 4.6966 4.7155 

75
0
 4.0615 4.9043 4.9064 5.7723 5.8085 6.7918 7.2459 7.6908 7.8359 8.6831 

Table 6: Variation of non-dimensional frequencies ( max maxa / C   ) for simply supported B/F/B MEE plate 

with skewed edges at different width to thickness ratios at α =   
0
  

a/h 

ratio 

Non dimensional normalized natural frequencies  for BFB under SSSS boundary condition with 

α = 60
0
 

1 2 3 4 5 6 7 8 9 10 

30 0.6659 1.0061 1.5722 1.8275 2.3033 2.3053 2.5386 2.9598 3.0396 3.5332 

100 0.2286 0.3657 0.6243 0.6491 0.9469 1.1303 1.2758 1.4624 1.7189 1.7863 

200 0.1211 0.2126 0.3259 0.3958 0.5424 0.6676 0.6717 0.7944 1.0092 1.0966 

 

Conclusion 
 

In the present paper, a FE model is developed to study the free vibration behaviour of MEE plate with skewed edges 

using layerwise shear deformation theory. Effect of various parameters such as skew angle, stacking sequence and 

aspect ratio on the non-dimensional eigen frequencies were investigated. For all stacking configurations considerd, 

the eigen frequencies were found to increase significantly for higher skew angles which is attributed to the increased  

stiffness of the MEE plate. The eigen frequencies are higher for α       in case of B/F/B/F/B stacking sequence 

while for B/F/B stacking sequence eigen frequencies are higher for α      .  Further, a decreasing trend in eigen 

frequencies with higher width to thickness ratio is observed. It may be due to the fact that thinner plates possesses 

lower stiffness.  
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