

Prasad G. R. Dr. K. C. Shet Dr. Narasimha B. Bhat

 NITK, Surathkal NITK, Surathkal Manipal Dot Net Pvt. Ltd., Manipal
 grprasad_bms@yahoo.com kcshet@yahoo.co.uk narasim@manipaldotnet.com

Abstract—This paper presents GRASP (“Greedy
Reconfigurable Approach for Shortest Path”), a new
shortest path algorithm using reconfigurable logic. It has
time complexity O(P), where ‘P’ is maximum of number of
edges along the shortest paths from source to other nodes. It
is a modification of Bellman-Ford algorithm and is highly
parallel and scalable. Unlike most other shortest path
algorithms, GRASP does not need to find the minimum of
nodes/adjacent nodes. Hence its FPGA implementation is
faster compared to other FPGA implementations.
Preliminary experimental results show that a 17-node
GRASP runs about 4.7 times faster compared to parallel
Bellman-Ford algorithm on Xilinx Virtex II.

I. INTRODUCTION
Shortest path (SP) problem in graphs is still an active

area of research[4], due to the demands for faster SP
algorithms by applications like CAD for VLSI[8],
robotics[6] and computer networks[3][5]. SP algorithms
which run on instruction set based processors like
Dijkstra’s[1] algorithm and others[4][7], iterate hundreds
of instructions and are sequential in nature, and hence
have high computation time. Reconfigurable logic based
approaches have been used in the past [3][9] to accelerate
SP algorithms. But they are slowed down by the process
of finding minimum of nodes/adjacent nodes.

Reconfigurable computing[2] achieves high
performance by spatially spreading computation on
hardware instead of iterating hundreds of instructions on a
processor. Reconfigurable computing has execution time
close to ASICs with flexibility to reconfigure. It can be
used to efficiently and effectively mimic “natural”
solutions: an implementation that replicates the way
nature tackles analogous problems.

This paper presents GRASP (“Greedy Reconfigurable
Approach for Shortest Path”), a new SP algorithm using
reconfigurable logic. It has time complexity O(P), where P
is the maximum of number of edges along the shortest
paths from source to other nodes. It avoids finding
minimum of nodes/adjacent nodes and hence is faster
compared to other approaches. It is a modification of
Bellman-Ford algorithm. In Bellman-Ford algorithm, for
every node ‘i’, distance Xi from source is set as Min(Xj +
Dij), where Xj is adjacent node’s distance from source and
Dij is distance between ‘i’ and ‘j’. It is possible to update
Xi of all nodes (i =1 to N) in parallel and we call this as
parallel Bellman-Ford(PBF) algorithm. In GRASP, a
daisy chain is used to to select first value of Xj +Dij, which
is less than Xi, in a greedy way and thus avoids finding
Min(Xj + Dij). Use of daisy chain makes it to operate at a
much higher clock frequency compared to PBF and hence
is much faster compared to PBF. GRASP has more

iterations compared to PBF, still it is faster than PBF.
GRASP assumes undirected graphs and positive integer
edge weights.

The rest of the paper is organized as follows. Section 2
explains related work for finding SP. GRASP and its
implementation details are given in Sections 3 and 4
respectively. Section 5 presents experimental results and
compares GRASP with other approaches. Section 6
suggests future extensions and the paper concludes with
Section 7.

II. RELATED WORK

A. Shortest path algorithms
Dijkstra’s algorithm [1] is a popular SP algorithm and is

O(N2). Let xi be the current distance of node ‘i’ from
source and D be the adjacency matrix. When there is no
edge between nodes ‘i’ and ‘j’, Dij is set to large value to
indicate infinity. Let ‘s’ be the source and ‘d’ be the
destination. Dijkstra’s algorithm is as shown in Figure 1.

Figure 1: Dijkstra’s Algorithm.

Dijkstra’s algorithm has been improved using efficient
data structures like radix heap and two level radix heap[7],
and have time complexities O(M+NlogC) and
O(M+NlogC/loglogC), where C is edge weight, M is
number of edges and N is number of nodes. A recent
improvement[4] has time complexity O(M+Dmaxlog(N!)),
where Dmax is maximal number of edges incident at a
vertex. Implementation of Dijkstra’s algorithm on
reconfigurable logic is presented in [3] and this uses a
comparator tree to find minimum instead of using a loop.
But the algorithm has to repeat steps 2 and 3(Figure 1)
until destination is reached and hence its time complexity
is O(N). Ralf Moller[6] has reformulated Dijkstra’s
algorithm and implemented that using the concept of
signal propagation, and has time complexity O(L).

Bellman-Ford algorithm is as shown in Figure 2 and
has time complexity O(N3). Here, distance of a node is
updated using the relation Xi =Min(Xj + Dij) and this is
continued till there are no changes in Xi. The parallel
implementation of Bellman-Ford algorithm updates all
node values in parallel and has time complexity O(P). For
the example graph in Figure 3 trace is as shown in Figures

1. Initialize xj to Dsj, where j =1 to N, and j ≠ s, set xs as 0.
Add ‘s’ to set of labeled nodes F={s}

2. Find minimum among xj
 xi=Min(xj) for j= 1 to N and node ‘j’ not in F

 3. Add node ‘i’ to F and update each node’s distance using
xj=Min(xj , xi + Dij) where j=1 to N

4. Repeat steps 2 and 3 until destination is reached

K. Elleithy (ed.), Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering,
© Springer Science+Business Media B.V. 2008

GRASP: A Greedy Reconfigurable Approach
for Shortest Path

393–398.

4 to 7. Nodes which are at infinity are not shown in
Figures.

Figure 2: Bellman-Ford Algorithm.

B. Problems and opportunities
Most of the existing algorithms find minimum of

nodes/adjacent nodes and are sequential in nature (select
nodes one by one), and hence have high computation time.

Finding minimum can be avoided by using a daisy
chain to select a better value for a node. This approach is
faster compared to the approach which finds minimum. In
Parallel Bellman-Ford(PBF) algorithm, nodes that are
having same number of edges along the shortest path from
source get fixed in parallel overcoming the sequential
selection of nodes. In GRASP also nodes get fixed in
parallel fashion.

III. GRASP
In GRASP, N nodes synchronously update their Xi

using a daisy chain. Each node ‘i’, finds Xj + Dij for all
adjacent nodes ‘j’, in parallel. It scans adjacent nodes from
1 to N to find a Xj+Dij that is less than its current Xi using
daisy chain and the first value thus found is set as new Xi
and corresponding ‘j’ is set as previous node of ‘i’. We
associate with each node a flag Oi and is set to 0 in the
beginning of the clock cycle, and is later set to 1 whenever
there is a change in Xi in that clock cycle. If ‘i’ does not
find any Xj + Dij as less than current Xi, then old position
is retained and Oi remains as 0. This process of updating
Xi needs adjacent node distances Xj and Dij’s from
adjacency matrix. Given this information, a node can
update its value independently and this makes GRASP
scalable. The algorithm stops when there are no changes
in any Xi or, in other words when all Oi are 0.

For graph in Figure 3, let v1 be the source and v10 be
the destination. The trace of GRASP is as shown in
Figures 8 to 13 and the algorithm is as shown in Figure
14. Initially Xi of v1 is 0 and all others will have
99999(indicating infinity and nodes which are at infinity
are not shown in Figures). At first clock cycle, v2 finds X1
+ D21 (i.e. 0+3) as less than X2 (i.e.99999) and hence sets
X2 to 3. Similarly v3 and v4 set their Xi to 2 and 4
respectively. In next clock cycle, v5 and v6 set their Xi to
5 and 4 respectively. In third clock cycle v7, v8 and v9 set
their Xi to 8, 8 and 7 respectively. In fourth clock cycle,
v10 sets its Xi to 12 through v7, as through v7 it finds Xi
as 12 lesser than 99999. At this time though through v9 it
is possible to set v10’s Xi to 9, it selects v7, as it is seen
first. In next clock it sets Xi to 11 through v8 and at the
end it sets Xi to 9 through v9 and stops.

1. Initialize xj to Dsj, where j =1 to N, and j ≠ s,
set xs as 0.

2. Update each node position by the relation
xi=Min(xj + Dij) for j = 1 to N and j ≠ i

3. Repeat step 2 till there are no changes.

Figure 3: An example graph.

v2

v1

v3

v4

v5

v6

v7

v9 v10

2 2

2

3

4

4

4

3

3

2

2

1
1 1

3

v8

V1

V3
V2

V4

3
2 4

Figure 4: After first clock
cycle.

V1

V3
V2

V4

V5

V6

3
2

2

4

2

Figure 5: After second clock cycle.

V1

V3
V2

V4

V9

V5

V8

V6

V7

3

3

2

2

4

4

2

3

Figure 6: After third clock cycle.

V1

V3
V2

V4

V9

V5

V8

V6

V10
V7

3

3

2

2

2

4

4

2

3

Figure 7: At the end.

V1

V3
V2

V4

3
24

Figure 8: After first clock cycle.

V1

V3
V2

V4

V5

V6

3
2

2

4

2

Figure 9: After second clock cycle.

V1

V3
V2

V4

V9

V5

V8

V6

V7

3

3

2

2

4

4

2

3

Figure 10: After third clock cycle.

V1

V3
V2

V4

V9

V5

V8

V6

V10

V7

3

3

2

2

4

4

4

2

3

Figure 11: After fourth clock cycle.

PRASAD ET AL. 394

