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Abstract—This paper presents GRASP (“Greedy 
Reconfigurable Approach for Shortest Path”), a new 
shortest path algorithm using reconfigurable logic. It has 
time complexity O(P), where ‘P’ is maximum of number of 
edges along the shortest paths from source to other nodes. It 
is a modification of Bellman-Ford algorithm and is highly 
parallel and scalable. Unlike most other shortest path 
algorithms, GRASP does not need to find the minimum of 
nodes/adjacent nodes. Hence its FPGA implementation is 
faster compared to other FPGA implementations. 
Preliminary experimental results show that a 17-node 
GRASP runs about 4.7 times faster compared to parallel 
Bellman-Ford algorithm on Xilinx Virtex II. 

I. INTRODUCTION 
Shortest path (SP) problem in graphs is still an active 

area of research[4], due to the demands for faster SP 
algorithms by applications like CAD for VLSI[8], 
robotics[6] and computer networks[3][5]. SP algorithms 
which run on instruction set based processors like 
Dijkstra’s[1] algorithm and others[4][7], iterate hundreds 
of instructions and are sequential in nature, and hence 
have high computation time. Reconfigurable logic based 
approaches have been used in the past [3][9] to accelerate 
SP algorithms. But they are slowed down by the process 
of finding minimum of nodes/adjacent nodes. 

Reconfigurable computing[2] achieves high 
performance by spatially spreading computation on 
hardware instead of iterating hundreds of instructions on a 
processor. Reconfigurable computing has execution time 
close to ASICs with flexibility to reconfigure. It can be 
used to efficiently and effectively mimic “natural” 
solutions: an implementation that replicates the way 
nature tackles analogous problems.  

This paper presents GRASP (“Greedy Reconfigurable 
Approach for Shortest Path”), a new SP algorithm using 
reconfigurable logic. It has time complexity O(P), where P 
is the maximum of number of edges along the shortest 
paths from source to other nodes. It avoids finding 
minimum of nodes/adjacent nodes and hence is faster 
compared to other approaches. It is a modification of 
Bellman-Ford algorithm. In Bellman-Ford algorithm, for 
every node ‘i’, distance Xi from source is set as Min(Xj + 
Dij), where Xj is adjacent node’s distance from source and 
Dij is distance between ‘i’ and ‘j’. It is possible to update 
Xi of all nodes (i =1 to N) in parallel and we call this as 
parallel Bellman-Ford(PBF) algorithm. In GRASP, a 
daisy chain is used to to select first value of Xj +Dij, which 
is less than Xi, in a greedy way and thus avoids finding 
Min(Xj + Dij). Use of daisy chain makes it to operate at a 
much higher clock frequency compared to PBF and hence 
is much faster compared to PBF. GRASP has more 

iterations compared to PBF, still it is faster than PBF. 
GRASP assumes undirected graphs and positive integer 
edge weights. 

The rest of the paper is organized as follows. Section 2 
explains related work for finding SP. GRASP and its 
implementation details are given in Sections 3 and 4 
respectively. Section 5 presents experimental results and 
compares GRASP with other approaches. Section 6 
suggests future extensions and the paper concludes with 
Section 7. 

II. RELATED WORK 

A. Shortest path algorithms 
Dijkstra’s algorithm [1] is a popular SP algorithm and is 

O(N2). Let xi be the current distance of node ‘i’ from 
source and D be the adjacency matrix. When there is no 
edge between nodes ‘i’ and ‘j’, Dij is set to large value to 
indicate infinity. Let ‘s’ be the source and ‘d’ be the 
destination. Dijkstra’s algorithm is as shown in Figure 1. 

 
 
 

 
 
 
 

Figure 1: Dijkstra’s Algorithm. 

Dijkstra’s algorithm has been improved using efficient 
data structures like radix heap and two level radix heap[7], 
and have time complexities O(M+NlogC) and 
O(M+NlogC/loglogC), where C is edge weight, M is 
number of edges and N is number of nodes. A recent 
improvement[4] has time complexity O(M+Dmaxlog(N!)), 
where Dmax is maximal number of edges incident at a 
vertex. Implementation of Dijkstra’s algorithm on 
reconfigurable logic is presented in [3] and this uses a 
comparator tree to find minimum instead of using a loop. 
But the algorithm has to repeat steps 2 and 3(Figure 1) 
until destination is reached and hence its time complexity 
is O(N). Ralf Moller[6] has reformulated Dijkstra’s 
algorithm and implemented that using the concept of 
signal propagation, and has time complexity O(L).  

Bellman-Ford algorithm is as shown in Figure 2 and 
has time complexity O(N3). Here, distance of a node is 
updated using the relation Xi =Min(Xj + Dij ) and this is 
continued till there are no changes in Xi. The parallel 
implementation of Bellman-Ford algorithm updates all 
node values in parallel and has time complexity O(P). For 
the example graph in Figure 3 trace is as shown in Figures 

1. Initialize xj  to Dsj, where j =1 to N, and j ≠ s, set xs  as  0.  
Add ‘s’ to set of labeled nodes F={s} 

2. Find minimum among xj 
 xi=Min(xj) for j= 1 to N and node ‘j’ not in F 

  3. Add node ‘i’ to F and update each node’s distance using 
xj=Min(xj , xi + Dij ) where j=1 to N 

4. Repeat steps 2 and 3 until destination is reached 
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4 to 7. Nodes which are at infinity are not shown in 
Figures. 

 
 
 
 
 

 
Figure 2: Bellman-Ford Algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Problems and opportunities 
Most of the existing algorithms find minimum of 

nodes/adjacent nodes and are sequential in nature (select 
nodes one by one), and hence have high computation time.  

Finding minimum can be avoided by using a daisy 
chain to select a better value for a node. This approach is 
faster compared to the approach which finds minimum. In 
Parallel Bellman-Ford(PBF) algorithm, nodes that are 
having same number of edges along the shortest path from 
source get fixed in parallel overcoming the sequential 
selection of nodes. In GRASP also nodes get fixed in 
parallel fashion. 
 

III. GRASP 
In GRASP, N nodes synchronously update their Xi 

using a daisy chain. Each node ‘i’, finds Xj + Dij for all 
adjacent nodes ‘j’, in parallel. It scans adjacent nodes from 
1 to N to find a Xj+Dij that is less than its current Xi using 
daisy chain and the first value thus found is set as new Xi 
and corresponding ‘j’ is set as previous node of ‘i’. We 
associate with each node a flag Oi and is set to 0 in the 
beginning of the clock cycle, and is later set to 1 whenever 
there is a change in Xi in that clock cycle. If ‘i’ does not 
find any Xj + Dij as less than current Xi, then old position 
is retained and Oi remains as 0. This process of updating 
Xi needs adjacent node distances Xj and Dij’s from 
adjacency matrix. Given this information, a node can 
update its value independently and this makes GRASP 
scalable. The algorithm stops when there are no changes 
in any Xi or, in other words when all Oi are 0. 

For graph in Figure 3, let v1 be the source and v10 be 
the destination. The trace of GRASP is as shown in 
Figures 8 to 13 and the algorithm is as shown in Figure 
14. Initially Xi of v1 is 0 and all others will have 
99999(indicating infinity and nodes which are at infinity 
are not shown in Figures). At first clock cycle, v2 finds X1 
+ D21 (i.e. 0+3) as less than X2 (i.e.99999) and hence sets 
X2 to 3. Similarly v3 and v4 set their Xi to 2 and 4 
respectively. In next clock cycle, v5 and v6 set their Xi to 
5 and 4 respectively. In third clock cycle v7, v8 and v9 set 
their Xi to 8, 8 and 7 respectively. In fourth clock cycle, 
v10 sets its Xi to 12 through v7, as through v7 it finds Xi 
as 12 lesser than 99999. At this time though through v9 it 
is possible to set v10’s Xi to 9, it selects v7, as it is seen 
first. In next clock it sets Xi to 11 through v8 and at the 
end it sets Xi to 9 through v9 and stops. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Initialize xj to Dsj, where j =1 to N, and j ≠ s, 
set xs  as  0. 

2. Update each node position by the relation 
xi=Min(xj + Dij) for j = 1 to N and j ≠ i 

3. Repeat step 2 till there are no changes. 

Figure 3: An example graph. 
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Figure 4: After first clock 
cycle. 
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Figure 5: After second clock cycle. 
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Figure 6: After third clock cycle. 
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Figure 7: At the end. 
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Figure 8: After first clock cycle. 
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Figure 9: After second clock cycle. 
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Figure 10: After third clock cycle. 
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Figure 11: After fourth clock cycle. 
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