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ABSTRACT
Information retrieval modeling aims to optimise generative and dis-
criminative retrieval strategies, where, generative retrieval focuses
on predicting query-specific relevant documents and discriminative
retrieval tries to predict relevancy given a query-document pair. IR-
GAN unifies the generative and discriminative retrieval approaches
through a minimax game. However, training IRGAN is unstable
and varies largely with the random initialization of parameters. In
this work, we propose improvements to IRGAN training through a
novel optimization objective based on proximal policy optimisation
and gumbel-softmax based sampling for the generator, along with
a modified training algorithm which performs the gradient update
on both the models simultaneously for each training iteration. We
benchmark our proposed approach against IRGAN on three differ-
ent information retrieval tasks and present empirical evidence of
improved convergence.

CCS CONCEPTS
• Information systems → Novelty in information retrieval;
Learning to rank.
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1 INTRODUCTION
IRGAN[8] unifies generative and discriminative retrieval models,
in the framework of Generative Adversarial Networks[2], through
a theoretical minimax game, allowing iterative optimization of both
the models. The training of the generator in IRGAN can be formu-
lated as a single-step reinforcement learning problem. Proximal
Policy Optimization has achieved state-of-the-art performance in
many reinforcement learning tasks[7]. The Gumbel-Softmax repa-
rameterization trick[4] has been applied to a variety of problem
domains with great success [5, 9]. We incorporate these ideas along
with a modified training procedure to improve IRGAN performance.
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2 METHODOLOGY
Consider the general information retrieval problem: given a query
set {q1 . . .qN }, and a set of documents {d1 . . .dM }, select a sub-
set of relevant documents for each query. IRGAN [8] consists of
a minimax game between a generative model pθ (d |q, r ), and a dis-
criminative model fϕ (q,d). The training of the generative model
can be formulated as a single-step reinforcement learning problem.
We propose a training objective based on proximal policy optimiza-
tion [7] and the gumbel-softmax[4] based sampling of documents
from the generative model as follows (v1 . . .vM are i.i.d samples
from Gumbel(0, 1) and τ is softmax temperature):

JG (qi ) = Ed∼pθ ′ (d |qi ,r )[min(ri (θ )A
pθ ′ (d |q,r )
i , clip(ri (θ ), 1 + ϵ, 1 − ϵ)A

pθ ′ (d |q,r )
i )]

ri (θ ) =
pθ (d |q,r )
pθ ′ (d |q,r )

A
pθ (d |q,d )
i = log(1 + exp(fϕ (q,d))) − Ed∼pd |q ,r [log(1 + exp(fϕ (q,d)))]

pθ (di |q, r ) =
exp((logдθ (q,di )+vi )/τ )∑M

k=1 exp((logдθ (q,dk )+vk )/τ )

The proposed training algorithm involves simultaneous updates
to θ and ϕ for each iteration in training. We also maintain a target
generator network with parameter θ ′ which is updated every k
iterations to match the current value of θ .

3 RESULTS
Table 1 summarizes the observed results on LETOR 4.0 (MQ2008)[6]
for web search, MovieLens-100k (ML-100k)[3] for item recommen-
dation and InsuranceQA (IQA) [1] for question answering on stan-
dard metrics like Precision@k and Normalized Discounted Cumula-
tive Gain@k using the same experimental setup as [8]. Our model
achieved significant performance improvement of around 7.5 - 11%
over IRGAN on all tested tasks. We observe improved performance
across tasks. This increase in precision indicates that the generator
learns a better estimate of the underlying relevance distribution,
resulting in a higher fraction of relevant documents being retrieved.
The increased ndcg scores indicate the improved graded relevance
of the retrieved documents. These observations indicate that, our
model’s training converges to a strategy closer to the Nash equilib-
rium of the minimax game than in the standard IRGAN.

Table 1: Observed results for various IR tasks

Model MQ2008 ML-100k IQA
p@5 ndcg@5 p@10 ndcg@10 p@1

IRGAN 0.1657 0.2225 0.3140 0.3723 0.6444
Our Model 0.1860 0.2418 0.3378 0.4026 0.7165
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