
                  Prasad G. R.          Dr. K. C. Shet     Dr. Narasimha B. Bhat 
            NITK, Surathkal                               NITK, Surathkal         Manipal Dot Net Pvt. Ltd., Manipal 
      grprasad_bms@yahoo.com                       kcshet@yahoo.co.uk            narasim@manipaldotnet.com 

 
Abstract— This paper presents NATR (“New Algorithm for 
Tracing Routes”), a new shortest path algorithm using 
reconfigurable logic and has time complexity O(L), where L 
is shortest path length. It uses ball and string model and is 
highly parallel and scalable. Unlike most other shortest path 
algorithms, NATR does not need to find the minimum of 
nodes/adjacent nodes. Hence its FPGA implementation is 
faster compared to other FPGA implementations. 
Preliminary experimental results show that a 17-node 
NATR runs about 6.3 times faster compared to parallel 
Bellman-Ford algorithm on Xilinx Virtex II. 

I. INTRODUCTION 
Shortest path (SP) problem in graphs is still an active 

area of research[4], due to the demands for faster SP 
algorithms by applications like CAD for VLSI[8], 
robotics[6] and computer networks[3][5]. SP algorithms 
which run on instruction set based processors, like 
Dijkstra’s[1] algorithm and others[4][7], iterate hundreds 
of instructions and are sequential in nature, and hence 
have high computation time. Reconfigurable logic based 
approaches have been used in the past [3][9] to accelerate 
SP algorithms. But they are slowed down by the process 
of finding minimum of nodes/adjacent nodes. 

Reconfigurable computing[2] achieves high 
performance by spatially spreading computation on 
hardware instead of iterating hundreds of instructions on a 
processor. Reconfigurable computing has execution time 
close to ASICs with flexibility to reconfigure. It can be 
used to efficiently and effectively mimic “natural” 
solutions: an implementation that replicates the way 
nature tackles analogous problems.  

This paper presents NATR (“New Algorithm for 
Tracing Routes”), a new SP algorithm using 
reconfigurable logic and has time complexity O(L), where 
L is shortest path length. It avoids finding minimum of 
nodes/adjacent nodes and hence is faster compared to 
other approaches. It mimics the formation of ball and 
string model[5]. In NATR, nodes fall down synchronously 
from the source by comparing their position with positions 
of adjacent nodes, and stop at shortest distance from 
source. Given adjacent node’s information, a node can 
move independently and this makes NATR scalable. 
NATR is intended for large graphs in which L < N, where 
N is number of nodes. NATR assumes undirected graphs 
and positive integer edge weights.  

The rest of the paper is organized as follows. Section 2 
explains related work for finding SP, the ball and string 
model and its formation. NATR and its implementation 
details are given in Sections 3 and 4 respectively. In 
Section 5, we implement parallel Bellman-Ford algorithm, 
as it takes ‘P’ clock cycles to find shortest path, where ‘P’ 
is maximum of number of edges along the shortest paths 
from source to other nodes. Section 6 presents 
experimental results and compares NATR with other 
approaches. Section 7 suggests future extensions and the 
paper concludes with Section 8. 

II. RELATED WORK 

A. Shortest path algorithms 
Dijkstra’s algorithm[1] is a popular SP algorithm and 

has time complexity O(N2). Let xi be the current distance 
of node ‘i’ from source and D be the adjacency matrix. 
When there is no edge between nodes ‘i’ and ‘j’, Dij is set 
to large value to indicate infinity. Let ‘s’ the be source and 
‘d’ be the destination. Dijkstra’s algorithm is as shown in 
Figure 1. 

 

 
 
 
 
 
 

Figure 1: Dijkstra’s algorithm. 

Dijkstra’s algorithm has been improved using 
efficient data structures like radix heap and two level 
radix heap[7], and have time complexities O(M+NlogC) 
and O(M+NlogC/loglogC), where C is edge weight, M is 
number of edges and N is number of nodes. A recent 
improvement[4] has time complexity O(M+Dmaxlog(N!)), 
where Dmax is maximal number of edges incident at a 
vertex. Implementation of Dijkstra’s algorithm on 
reconfigurable logic is presented in [3] and this uses a 
comparator tree to find minimum instead of using a loop. 
But the algorithm has to repeat steps 2 and 3(Figure 1) 
until destination is reached and hence its time complexity 
is O(N). Ralf Moller[6] has reformulated Dijkstra’s 
algorithm and implemented that using the concept of 
signal propagation, and has time complexity O(L).  
B. Ball and String model(BSM) 

Ball and string model[5] of a graph is a network of 
balls connected by strings, where balls and strings 
represent nodes and edges respectively. For graph in 
Figure 2, Figure 3 shows equivalent BSM. In BSM, a 
straight line is a fully stretched string and a curve is a 
string with slack. 

To illustrate formation of BSM from the graph, let v1 
be the source. Assume all balls(nodes) are together as 
shown in Figure 4 and are at a distance of 0 from source. 
Source is fixed, which is shown by hatching. A fixed ball 
cannot move down. Keeping source fixed, when other 
balls are released, they fall down as shown in Figures 5 to 
7. Figure 5 shows positions of balls after they fall down 
by unit distance and at this point no string is stretched to 
full. Figure 6 shows positions of balls after they fall down 
by distance of 2. Now, the string between v1 and v3 is 
stretched to full. Hence v3 cannot fall beyond 2 and gets 
fixed at 2. After falling by a distance of 3, balls are as 

1. Initialize xj to Dsj, where j =1 to N, and j ≠ s, set xs   as  0. 

Add  ‘s’ to set of labeled nodes F={s} 
2. Find minimum among xj 
 xi=Min(xj) for j= 1 to N and node ‘j’ not in F 

3. Add node ‘i’ to F and update each node’s distance using 
 xj=Min(xj , xi + Dij ) where j=1 to N 

4. Repeat steps 2 and 3 until destination is reached 
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shown in Figure 7 and at the end we get BSM as shown in 
Figure 3. In BSM, all strings along the shortest path are 
stretched to full and other paths will have one or more 
slacks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In [5], BSM is used to rebuild shortest path tree(SPT), 
whenever SPT gets disturbed due to changes in edge 
weights. This problem is represented as a linear 
programming problem and is solved to get new SPT. 
NATR is a simple approach to find shortest path and it 

uses reconfigurable logic, and hence is much faster 
compared to [5]. 

C. Problems and opportunities 
Most of the existing algorithms are sequential in 

nature(select nodes one by one) and find minimum of 
nodes/adjacent nodes, and hence have high computation 
time.  

In BSM, strings will have lengths equal to 
corresponding edge weights in graph and hence a closer 
node will have shorter length and gets fixed first, thus 
eliminating the need for finding minimum. In addition, 
during the formation of BSM, nodes that are at the same 
distance from source get fixed in parallel(like, v4 and v6), 
which  overcomes sequential selection of nodes.  

III. NATR 
NATR mimics the formation of BSM to find shortest 

path. In NATR all nodes fall down from source 
synchronously. They fall under the constraint of not 
breaking any strings and stop at shortest distance from 
source. To fall down, a node needs information about 
adjacent nodes and  this consists of adjacent node position, 
its status(whether node is fixed or movable) and weights 
on edges connecting the adjacent nodes(from adjacency 
matrix, D). Given this information, a node can fall down 
independently and this makes NATR scalable. Each node 
consists as its information; node position, status flag, 
step_size and previous_node. Initially for all nodes, 
position is set to 0 and step_size is set to 1. For all non 
source nodes flag is set to 0 and for source it is set to 1. 
Logic behind a node’s move is as said below. 

• Find next position(new Xi) of node ‘i’ by adding its 
position value and step_size. 

• Find the actual distance(Distj) from each of its 
adjacent nodes using Distj =Xi-Xj where 1<=j<=N. 

• Compare Dij with Distj set flags Cj and Ej indicating 
less and equal respectively. 

• If any of Cj is 1, then move is failure(as string 
connecting node ‘i’ and ‘j’ breaks) and old position is 
retained. 

• If none of the Cj’s are 1 then move is successful and 
position is set to new position found in step1. 

• On a successful move, if any Ej is set to 1(string is 
stretched to full) with corresponding Oj is set to 1, 
then node ‘i’ gets fixed through ‘j’ and ‘j’ is set as 
previous_node of  ‘i’ and status flag Oi is set to 1. 

Here initially step_size is set to 1. Later at each clock 
cycle, if move is successful step_size is multiplied by ‘k’, 
where ‘k’ is acceleration factor. Whenever a move is 
failure, if step_size >=k then it is divided by ‘k’ else 
step_size is set to 1. Step_size is varied to accelerate 
node’s move. NATR with k=1, takes exactly L clock 
cycles and hence its time complexity is O(L). For k=1, the 
moves are as shown in Figures 4 to 7, and at the end it 
looks as shown in Figure 3. With k > 1, NATR takes less 
than L clock cycles to find shortest path, for large edge 
weights. But for small edge weights it takes more than L 
clock cycles due to excessive failed attempts. So, for small 
edge weights (<5) k=1 will be efficient. Figures 8 to 10 
show the moves in NATR for k=2. In first clock cycle all 
nodes move by distance of 1 as shown in Figure 9 and 

Figure 2: An example graph. 
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Figure 3: Ball and String model for the 
graph of Figure 2. 
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Figure 4: Initially all balls are together and v1 is fixed.
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Figure 5: Balls after moving by distance of 1. 
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Figure 6: Balls after moving by distance of 2, v3 is fixed. 
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Figure 7: Balls after moving by distance of 3, v2 is fixed. 
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