
 Prasad G. R. Dr. K. C. Shet Dr. Narasimha B. Bhat
 NITK, Surathkal NITK, Surathkal Manipal Dot Net Pvt. Ltd., Manipal
 grprasad_bms@yahoo.com kcshet@yahoo.co.uk narasim@manipaldotnet.com

Abstract— This paper presents NATR (“New Algorithm for
Tracing Routes”), a new shortest path algorithm using
reconfigurable logic and has time complexity O(L), where L
is shortest path length. It uses ball and string model and is
highly parallel and scalable. Unlike most other shortest path
algorithms, NATR does not need to find the minimum of
nodes/adjacent nodes. Hence its FPGA implementation is
faster compared to other FPGA implementations.
Preliminary experimental results show that a 17-node
NATR runs about 6.3 times faster compared to parallel
Bellman-Ford algorithm on Xilinx Virtex II.

I. INTRODUCTION
Shortest path (SP) problem in graphs is still an active

area of research[4], due to the demands for faster SP
algorithms by applications like CAD for VLSI[8],
robotics[6] and computer networks[3][5]. SP algorithms
which run on instruction set based processors, like
Dijkstra’s[1] algorithm and others[4][7], iterate hundreds
of instructions and are sequential in nature, and hence
have high computation time. Reconfigurable logic based
approaches have been used in the past [3][9] to accelerate
SP algorithms. But they are slowed down by the process
of finding minimum of nodes/adjacent nodes.

Reconfigurable computing[2] achieves high
performance by spatially spreading computation on
hardware instead of iterating hundreds of instructions on a
processor. Reconfigurable computing has execution time
close to ASICs with flexibility to reconfigure. It can be
used to efficiently and effectively mimic “natural”
solutions: an implementation that replicates the way
nature tackles analogous problems.

This paper presents NATR (“New Algorithm for
Tracing Routes”), a new SP algorithm using
reconfigurable logic and has time complexity O(L), where
L is shortest path length. It avoids finding minimum of
nodes/adjacent nodes and hence is faster compared to
other approaches. It mimics the formation of ball and
string model[5]. In NATR, nodes fall down synchronously
from the source by comparing their position with positions
of adjacent nodes, and stop at shortest distance from
source. Given adjacent node’s information, a node can
move independently and this makes NATR scalable.
NATR is intended for large graphs in which L < N, where
N is number of nodes. NATR assumes undirected graphs
and positive integer edge weights.

The rest of the paper is organized as follows. Section 2
explains related work for finding SP, the ball and string
model and its formation. NATR and its implementation
details are given in Sections 3 and 4 respectively. In
Section 5, we implement parallel Bellman-Ford algorithm,
as it takes ‘P’ clock cycles to find shortest path, where ‘P’
is maximum of number of edges along the shortest paths
from source to other nodes. Section 6 presents
experimental results and compares NATR with other
approaches. Section 7 suggests future extensions and the
paper concludes with Section 8.

II. RELATED WORK

A. Shortest path algorithms
Dijkstra’s algorithm[1] is a popular SP algorithm and

has time complexity O(N2). Let xi be the current distance
of node ‘i’ from source and D be the adjacency matrix.
When there is no edge between nodes ‘i’ and ‘j’, Dij is set
to large value to indicate infinity. Let ‘s’ the be source and
‘d’ be the destination. Dijkstra’s algorithm is as shown in
Figure 1.

Figure 1: Dijkstra’s algorithm.

Dijkstra’s algorithm has been improved using
efficient data structures like radix heap and two level
radix heap[7], and have time complexities O(M+NlogC)
and O(M+NlogC/loglogC), where C is edge weight, M is
number of edges and N is number of nodes. A recent
improvement[4] has time complexity O(M+Dmaxlog(N!)),
where Dmax is maximal number of edges incident at a
vertex. Implementation of Dijkstra’s algorithm on
reconfigurable logic is presented in [3] and this uses a
comparator tree to find minimum instead of using a loop.
But the algorithm has to repeat steps 2 and 3(Figure 1)
until destination is reached and hence its time complexity
is O(N). Ralf Moller[6] has reformulated Dijkstra’s
algorithm and implemented that using the concept of
signal propagation, and has time complexity O(L).
B. Ball and String model(BSM)

Ball and string model[5] of a graph is a network of
balls connected by strings, where balls and strings
represent nodes and edges respectively. For graph in
Figure 2, Figure 3 shows equivalent BSM. In BSM, a
straight line is a fully stretched string and a curve is a
string with slack.

To illustrate formation of BSM from the graph, let v1
be the source. Assume all balls(nodes) are together as
shown in Figure 4 and are at a distance of 0 from source.
Source is fixed, which is shown by hatching. A fixed ball
cannot move down. Keeping source fixed, when other
balls are released, they fall down as shown in Figures 5 to
7. Figure 5 shows positions of balls after they fall down
by unit distance and at this point no string is stretched to
full. Figure 6 shows positions of balls after they fall down
by distance of 2. Now, the string between v1 and v3 is
stretched to full. Hence v3 cannot fall beyond 2 and gets
fixed at 2. After falling by a distance of 3, balls are as

1. Initialize xj to Dsj, where j =1 to N, and j ≠ s, set xs as 0.

Add ‘s’ to set of labeled nodes F={s}
2. Find minimum among xj
 xi=Min(xj) for j= 1 to N and node ‘j’ not in F

3. Add node ‘i’ to F and update each node’s distance using
 xj=Min(xj , xi + Dij) where j=1 to N

4. Repeat steps 2 and 3 until destination is reached

K. Elleithy (ed.), Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering,
© Springer Science+Business Media B.V. 2008

NATR: A New Algorithm for Tracing Routes

399–405.

shown in Figure 7 and at the end we get BSM as shown in
Figure 3. In BSM, all strings along the shortest path are
stretched to full and other paths will have one or more
slacks.

In [5], BSM is used to rebuild shortest path tree(SPT),
whenever SPT gets disturbed due to changes in edge
weights. This problem is represented as a linear
programming problem and is solved to get new SPT.
NATR is a simple approach to find shortest path and it

uses reconfigurable logic, and hence is much faster
compared to [5].

C. Problems and opportunities
Most of the existing algorithms are sequential in

nature(select nodes one by one) and find minimum of
nodes/adjacent nodes, and hence have high computation
time.

In BSM, strings will have lengths equal to
corresponding edge weights in graph and hence a closer
node will have shorter length and gets fixed first, thus
eliminating the need for finding minimum. In addition,
during the formation of BSM, nodes that are at the same
distance from source get fixed in parallel(like, v4 and v6),
which overcomes sequential selection of nodes.

III. NATR
NATR mimics the formation of BSM to find shortest

path. In NATR all nodes fall down from source
synchronously. They fall under the constraint of not
breaking any strings and stop at shortest distance from
source. To fall down, a node needs information about
adjacent nodes and this consists of adjacent node position,
its status(whether node is fixed or movable) and weights
on edges connecting the adjacent nodes(from adjacency
matrix, D). Given this information, a node can fall down
independently and this makes NATR scalable. Each node
consists as its information; node position, status flag,
step_size and previous_node. Initially for all nodes,
position is set to 0 and step_size is set to 1. For all non
source nodes flag is set to 0 and for source it is set to 1.
Logic behind a node’s move is as said below.

• Find next position(new Xi) of node ‘i’ by adding its
position value and step_size.

• Find the actual distance(Distj) from each of its
adjacent nodes using Distj =Xi-Xj where 1<=j<=N.

• Compare Dij with Distj set flags Cj and Ej indicating
less and equal respectively.

• If any of Cj is 1, then move is failure(as string
connecting node ‘i’ and ‘j’ breaks) and old position is
retained.

• If none of the Cj’s are 1 then move is successful and
position is set to new position found in step1.

• On a successful move, if any Ej is set to 1(string is
stretched to full) with corresponding Oj is set to 1,
then node ‘i’ gets fixed through ‘j’ and ‘j’ is set as
previous_node of ‘i’ and status flag Oi is set to 1.

Here initially step_size is set to 1. Later at each clock
cycle, if move is successful step_size is multiplied by ‘k’,
where ‘k’ is acceleration factor. Whenever a move is
failure, if step_size >=k then it is divided by ‘k’ else
step_size is set to 1. Step_size is varied to accelerate
node’s move. NATR with k=1, takes exactly L clock
cycles and hence its time complexity is O(L). For k=1, the
moves are as shown in Figures 4 to 7, and at the end it
looks as shown in Figure 3. With k > 1, NATR takes less
than L clock cycles to find shortest path, for large edge
weights. But for small edge weights it takes more than L
clock cycles due to excessive failed attempts. So, for small
edge weights (<5) k=1 will be efficient. Figures 8 to 10
show the moves in NATR for k=2. In first clock cycle all
nodes move by distance of 1 as shown in Figure 9 and

Figure 2: An example graph.

v2

v1

v3

v4

v5

v6

v7

v9 v10

2 2

2

3

4

4

4

3

3

2

2

1
1 1

3

v8

V1

V3
V2

V4

V9

V5

V8

V6

V10
V7

3

2 3

3

1 1

1

2

2

2

4

4

4

2

3

Figure 3: Ball and String model for the
graph of Figure 2.

V1 V3 V2 V4 V9V5 V8 V6 V10V7

Figure 4: Initially all balls are together and v1 is fixed.

V1

V3V2 V4 V9V5 V8V6 V10V7
3 2 4

Figure 5: Balls after moving by distance of 1.

V1

3 2 4

Figure 6: Balls after moving by distance of 2, v3 is fixed.

V3V2 V4 V9V5 V8V6 V10V7

V1

3 2 4

Figure 7: Balls after moving by distance of 3, v2 is fixed.

V3

V2 V4 V9V5 V8V6 V10V7

PRASAD ET AL. 400

