

Phoenix: System for Implementing Private and

Hybrid Cloud for OMIC Sciences Applications
Prahalad H.A.

1*
, Asoke Talukder

2*
, Shubhangi Pardeshi

3#
, Sameer Tamsekar

4#
, Hari Krishna R.

5#
,

Chandrashekar M.A.6#, B. Niket7#, Santhosh Gandham8*

*Geschickten Solutions, Bangalore, India

Department of Computer Engineering, NITK, Surathkal, India

1*
prahalad@geschickten.com,

2*
asoke.talukder@geschickten.com,

 3
imshubhangi@gmail.com,

4
stamsekar@gmail.com,

 5
harrykris85@gmail.com,

 6
chandru.srgp@gmail.com,

 7
bniketh@gmail.com,

8*
santhosh.gandham@geschickten.com,

Abstract— Computational Quantitative Biology applications like

Genomics, Transcriptomics, Proteomics, Metabolomics and Systems

Biology at large require high computing resources that include both

processing and storage. Cloud computing provides dynamically

scalable on-demand infrastructure in a virtualised environment for

processor intensive and data/storage intensive applications. Users

need not own this infrastructure; rather use them as and when needed

by paying for these resources in pay-as-you-use model that are

generally available as a service over the internet. In this paper we

present Phoenix - a middleware system for platform as a service

(PaaS). This paper describes Phoenix as a novel system for

implementing GenomicsCloud – A Cloud computing solution

designed specifically to solve OMIC sciences problems. It comprises

of a vast pool of compute, storage and application infrastructure for

processing the data generated by next generation sequencers (NGS).

Keywords – GenomicsCloud, Phoenix, Systems Biology,

Computational Biology, OMIC Sciences, Cloud Computing,

Virtualization, Next Generation Sequencing.

I. INTRODUCTION

Computational Quantitative Biology and applications in

OMIC Sciences (Genomics, Transcriptomics, Proteomics,

etc.) demand high computing, storage, and networking

capabilities. The raw data generated by any experiment or in

OMIC sciences often exceed terabytes of data and already

challenging the computational infrastructure typically

available in many laboratories. Furthermore, biological

datasets are having exponential growth doubling every 18

months [1]. These data are used to understand the genetic

structure of a species and how to engineer them to the benefit

of mankind by either to cure some disease or engineering

high-yield crops. The only long-term solution to the

challenges posed by the massive data-sets being generated is

to combine computational biology research with advances

from Cloud Computing.

Systems Biology is another faculty of research where

multiple datasets from variety of species are examined. Large-

scale data integration in Systems Biology has catalysed

identification of nearly all yeast mitochondrial proteins and

many of their functional interactions, as well as how this

knowledge has aided the search for new disease genes. The

human candidate genes proposed can be tested back in the

yeast, where cell-based assays can be performed in a high-

throughput manner. All these types of research in Systems

Biology and applications in OMIC Sciences demand High

Performance Computing (HiPC) and high storage capacity [2].

Cloud Computing [3] is emerging as a new style of

distributed computing that adapts to dynamically scalable

system resource requirements. With Cloud Computing

resources – platform, infrastructure and software are

dynamically configured and offered to user’s on-demand as

Platform-as-a-Service (PaaS), Infrastructure-as-a-Service

(IaaS) and Software-as-a-Service (SaaS) respectively. All

these can be combined to build a GenomicsCloud.

GenomicsCloud consists of a vast pool of virtualized

resources in a hybrid cloud environment with parallelized

Computational Biology applications that can either scale-up or

scale down on-demand.

Cloud Computing also offer some added advantages;

through Cycle Scavenging or shared resources, it can create a

“grid” (Grid Computing paradigm) from the unused resources

in a network of participants (private or hybrid) nodes.

Typically this technique uses desktop computer instruction

cycles through virtualization that would otherwise be wasted

at non peak-hours like night, during lunch, or even in the

scattered seconds throughout the day when the computer is

waiting for user input or slow devices [4]. Through this shared

infrastructure, it improves energy efficiency, reduces

hardware (compute, storage and network) infrastructure

requirements, costs, floor space, carbon foot-print, and

ultimately increases utilisation.

Because Cloud Computing uses shared resource facility – it

is important that the Cloud is managed effectively and

efficiently so that service level can be ensured. Phoenix is an

attempt to introduce ease of implementing and administering

any GenomicsCloud instance.

Also, resources in the cloud are distributed, which makes

the management of the virtual resources available in cloud

complex. Thus a Virtual Machine Manager (VMM) [5] is

required to manage clusters with lesser efforts. The existing

VMMs have support for limited hypervisors. Also most of

these hypervisor tools have only command line interface –

these requires high level of expertise to use them. For

Computational Biologists a GUI (Graphical User Interface)

based tool is desired. Also, a command based tool requires

remote login into the remote system making is more prone to

security attacks. The basic philosophy of Cloud is that it will

978-1-4244-7202-4/10/$26.00 ©2010 IEEE

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 22,2021 at 09:44:29 UTC from IEEE Xplore. Restrictions apply.

be used over the internet making it necessary that the user-

interface is Web-based. Therefore, to make a GenomicsCloud

user friendly, it is recommended that an administrative tool for

GenomicsCloud be Web-based tool that can be used through a

Web browser. Web-based management also makes it possible

to be used from even a Smartphone. In addition, the Web-

based administrative tool must provide support for maximum

and most popular hypervisors.

Phoenix is an Open-source tool developed at National

Institute of Technology Karnataka at Surathkal by the

Geschickten team and presented here to address all the

challenges of a GenomicsCloud. It is designed to be

hypervisor agnostic. It supports Virtual Box [6] hypervisor in

addition to Xen [7], Kernel based Virtual Machine (KVM) [8]

VMware [16] and Amazon Elastic Compute Cloud (EC2) [9].

It uses [14] as backend to manage virtual machines with many

feature enhancements from security to rendering. Phoenix has

a Web-based interface developed on top of generic messaging

API (Application Programming Interface) of OpenNebula.

Another novel approach for Phoenix is that is offers higher

security through user authentication; also, any third party

application can be developed quite easily on top of this

generic messaging API of Phoenix.

In this paper we present the design and performance

analysis of the GenomicsCloud management tool Phoenix.

The paper is organized as following. In Section 2 we present

the philosophy of Cloud Computing. In Section 3 we present

GenomicsCloud. In Section 4 we provide related work

including OpenNebula and Globus Nimbus. In Section 5 we

present design, analysis and implementation of virtualization

tool “Phoenix” to manage the cloud resources. Further,

Section 6 describes functionalities of Phoenix. Section 7

presents the performance analysis results of Phoenix. We

conclude the paper with Section 8.

II. CLOUD COMPUTING

Cloud Computing can be viewed as a distributed computing

system providing compute, storage and network as a service,

on-demand on a pay-as-you-use basis. The Cloud appears to

users as a single autonomous system providing all the

computing infrastructure user needs. It is built on servers

having different levels of virtualization technologies. The

services provided by cloud are accessible to clients connected

via a network infrastructure that may be wired or wireless

using thin clients like a browser or a Smartphone.

Many thinkers believe that Cloud Computing is poised to

become the defining technology of the 21st century. It is

claimed that Cloud Computing will become an essential tool

in the world of research and enterprise alike. From aeronautics

to life-sciences including finance and computer simulation.

Cloud solutions such as Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a Service

(SaaS) will make inroads into most areas.

As Cloud services need to be scalable, distributed and

scale-up or scale-down on-demand, some of the desired

characteristics of such an infrastructure are:

· Self-healing

· Self monitoring

· Resource registration and discovery

· Service level agreement definitions

· Automatic reconfiguration

Cloud Computing provides benefits of enormous

infrastructure to the users or clients without having to worry

about the actual implementation and administration. Since

storage service is one of the important services provided in the

Cloud, clients have access to multiple data centres from any

system in the globe having access to the cluster. Thus Clouds

provide more mobility to clients. One of the major advantages

of Cloud Computing is that, it is highly automated and

scalable. This means clients can add services as and when

needed without cost incurred for additional hardware. To

support this flexible environment complex cloud infrastructure

is built and maintained transparently by Cloud providers in

distributed manner. So, clients need not worry about data-

centres or implementation and management of services.

Similar concepts were there in the past as well. These were

paradigms like Utility Computing, Autonomic Computing and

Grid Computing [4]. Cloud is an amalgamation of all these

and can be defined as,

· Utility computing - The packaging of computing

resources, such as computation and storage, as a

metered service similar to a traditional public utility

such as electricity

· Autonomic computing - Computer systems capable of

self-management

· Grid computing - A form of distributed computing

whereby a 'super and virtual computer' is composed of a

cluster of networked, loosely coupled computers, acting

in concert to perform very large tasks. These grids

could well be Processor Grids, Data Grids, or a

combination of both.

III. GENOMICSCLOUD

GenomicsCloud is a Cloud Computing Infrastructure for

Computational Biology and OMIC Sciences applications. The

path-breaking human genome project gave rise to an

exponential increase in the volume and diversification of data,

including gene and protein data, nucleotide sequences and

biomedical literature. Research projects in genetics labs

around the world that are researching on genome sequencing,

transcriptome studies, etc produce an ever-increasing amount

of data; therefore, the area of computational biology now

poses some of the biggest challenges in computer science and

data mining such as data storage, visualization, modelling, and

discovering new meaning out of this enormous data.

GenomicsCloud is a conglomeration of clusters and grids

specifically designed for Computational Biology applications.

The computing infrastructure can be a private grid-computing

infrastructure (private cloud) formed either out of the desktop

computers that uses the philosophy of CPU Scavenging or

Cycle Scavenging or dedicated High Performance Computing

(HiPC) systems along with public clouds (likes of Amazon

and Google). GenomicsCloud includes any cluster as well the

enterprise might have. In addition, GenomicsCloud has the

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 22,2021 at 09:44:29 UTC from IEEE Xplore. Restrictions apply.

capability to extend over the public cloud infrastructure in a

secured fashion. GenomicsCloud is managed through Phoenix

(discussed in Section V & VI) makes it quite easy to manage

the hypervisors in the private Cloud or even public Cloud.

Providing an infrastructure like Phoenix to manage PaaS

and IaaS is not sufficient; therefore, GenomicsCloud also

provides tools for parallelization. This includes both tightly-

coupled parallelization and loosely-coupled parallelization

mechanism. There are many OMIC sciences applications that

are inherently serial; examples are Bruijen Graph [10]

Assembly following a Sequencing experiment. For such

applications a tightly-coupled cluster with parallel code is

more suitable. On contrast, for Sequence analysis or Gene

hunting applications loosely-coupled grids will produce better

results with the help of algorithms like MapReduce [11].

IV. RELATED WORK

In this section we present various Virtual Machine Manager

Tools and the underlying philosophy used to manage virtual

infrastructure in distributed system.

A. Eucalyptus

Eucalyptus [12] is an open source tool, which can be used

to create in-premise private and hybrid cloud. The current

interfaces to Eucalyptus are compatible with Amazon’s EC2,

Simple Storage Service (S3) [9], and Elastic Block Storage

(EBS) interfaces [9], but the infrastructure is designed to

support multiple client-side interfaces. It is based on

commonly available UNIX tools and web services.

B. Nimbus

Nimbus is another Open Source toolkit [13] which is

developed to build scientific Clouds. It is used to create IaaS

type of clouds. The Nimbus contains a frontend Globus

service and multiple workspace control agents on host

resources for virtual machine deployment. Nimbus allows a

client to deploy virtual machines (VMs) on physical resources

to lease remote resources and configuring them to represent an

environment as per the user requirements.

C. OpenNebula

OpenNebula is a VMM that enables the dynamic

deployment and replacement of virtualized services. It is an

open source virtualization infrastructure engine. It is used to

deploy, monitor and control virtual machines. Open Nebula

currently supports KVM and Xen hypervisors along with

public cloud interface Amazon EC2 over command line

interface.

OpenNebula system consists of one OpenNebula server

called front-end and multiple number of cluster nodes on

which virtual machines are deployed. Front-end

communicates with cluster nodes using Secure Shell (SSH)

protocol. OpenNebula currently supports NFS (Network File

System) and SSH protocols to transfer virtual images from

image repository. The front end has command line user

interface (CLI) to create and manage virtual machine and

cluster nodes in system cluster.

V. PHOENIX – THE OPEN SOURCE FRAMEWORK

Phoenix is a framework that is designed to manage a large

cloud that comprise of Grids, Clusters, and Clouds; these

could be either in a private space or in the public space. The

Phoenix framework consists of two modules viz. Front-end

for user interface built on top of OpenNebula core and

OpenNebula drivers for interfacing different hypervisors

which extended from core as shown in Fig. 1. We discuss

these modules and OpenNebula in subsequent subsections.

Fig. 1. Phoenix Architecture

The communication between drivers and core is performed
using simple ASCII protocol, which simplifies development of
new drivers.

Fig. 2. OpenNebula Core

Following are the three Middleware Access Drivers (MAD)

in OpenNebula:

· Transfer MAD: Transfer driver is used by transfer

manager to transfer virtual machine images and

checkpoint files.

· Information MAD: Information driver is used while

deploying and monitoring virtual machine to gather

information of physical resources.

· Virtual Machine MAD: It is used to deploy and control

virtual machines.

VI. PHOENIX - ARCHITECTURE

Architecture of Phoenix core is shown in Fig. 2. The

system is divided into three major components comprising

static OpenNebula at the top, which is common for any

hypervisor in use. The middle layer is the pluggable driver

modules. Different Information and Virtual Machine drivers

are required to interact with different hypervisors. This figure

shows drivers for VirtualBox but similar type of drivers for

other hypervisor may also exist when activated by the

administrator. The lowest layer component is cluster node on

which virtual Machine is deployed. The interaction of Cluster

Node with VirtualBox hypervisor managed by libvirtd

[15] daemon is shown in the diagram.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 22,2021 at 09:44:29 UTC from IEEE Xplore. Restrictions apply.

The command line utilities are available in OpenNebula to

send commands to OpenNebula engine. These utilities are

XML-RPC clients and calls XML-RPC methods exported by

Request Manager Module in OpenNebula core exports; these

are called by XML-RPC clients such as command line utilities

provided by OpenNebula. All manager processes are created

when OpenNebula daemon is started. These manager

processes are responsible to call respective drivers for

communication with underlying hypervisor on cluster nodes.

The MAD layer in OpenNebula core provides uniform access

to these drivers. To perform tasks such as deploying VM,

gathering information etc., VMM and IM drivers issue libvirt

based commands to execute on cluster node using SSH. On

the cluster node, libvirtd daemon communicates with

hypervisor. Libvirtd can be configured to use TLS, SSH, TCP

or UNIX sockets for communicating with the hypervisor.

Fig. 3. Connector flow Diagram

VII. FUNCTIONALITIES OF PHOENIX

The Front-end of Phoenix provides web based user

interface to create and manage the virtual machines. The

major components of user interface are host management,

virtual machine management (VMM), and virtual network

management. In addition to these cluster component

management, Phoenix provides facility to administer users.

With the built-in access control mechanism users can view or

manage virtual infrastructure.

This Web based management console is basically divided

into four subsections viz. User Administration, Hosts

Management, Virtual Machine Management and Virtual

Network Management (Fig. 3).

A. User Administration

User administration is provided to users of Phoenix

management console. It provides facilities such as new user

registration (creation), login facility, changing user

information, profile etc. It also provides user statistics such as

login count, last login request time and IP address, Current

request time and IP address.

B. Hosts Management

Hosts management provides addition of cluster nodes

where administrator can deploy virtual machines. Summary

information provides details such as current state, monitoring

drivers, and supported actions such as hardware usage

information, capacity of the hosts, memory usage, CPU usage,

number of virtual machines running etc.

C. Virtual Machine Management

Virtual Machine management gives an option to create a

virtual resource and deploy it on any of the available pool of

hosts. Once it is deployed, it is continuously monitored and its

status is shown on the summary page of Virtual Machines.

D. Virtual Network Management

In Phoenix, we can define certain networks, having a pool

of available IP address and MAC address which could be

assigned to a Virtual Machine deployed on a Host. Using

these assigned addresses, Virtual Machines can make use of

Network adapters of Hosts to communicate with each other

and create a subnet among them.

VIII. CHARGING BILLING AND AUDIT TRAIL

All actions requested from the management console are

logged as usage information. These are collective logs which

are user specific. This usage information can be used to audit

the usage. This can also be used to reconcile the charges user

might have been asked to pay to a public cloud provider.

For GenomicsCloud hosted on top of Phoenix to be

provided as a SaaS (Software as a Service), requires some

billing and charging capability. There are basically two ways

by which a service provider can charge the user for using the

GenomicsCloud service. Charging is mainly divided into three

categories, viz., one-time fee, recurring fee, and usage-based

fee.

1. There could be a one-time fee during registration or

provisioning of service that is similar to license fee.

2. User can pay a fixed amount (recurring) and rent the

specific set of physical resources for a specific amount of

time. E.g. User can rent 4 CPU machines with 2GHz

processing power and 10G Hard disk space for a month.

Phoenix provides the machine credentials which would be

valid for a month and can be managed via Phoenix

management console. This service can be charged for

specific levels of authorization. E.g. Professional license

will allow user to save the state of machine, migrate the

machine to free physical resource, while Basic license

will allow only start and stop actions.

3. Second way to charge the user is to charge the user based

on their usage. This uses logging of usage details of every

action user performed and charge it according to its use.

This is useful for refund or SLA (Service Level

Agreement) management.

IX. MAJOR FINDINGS

Phoenix tool was found to be better compared to other

virtual machine managers such as OpenNebula, Eucalyptus

and Globus Nimbus, based on factors like usability, flexibility

and supportive to cloud infrastructures. Table 2 shows

comparison of Phoenix with other VMMs. The graphical user

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 22,2021 at 09:44:29 UTC from IEEE Xplore. Restrictions apply.

interface makes this tool user friendly and easy for VM

management even for users who are not computer savvy like

users from Biology background. Also additional support for

VirtualBox overweights other VMM engines including

OpenNebula.

TABLE 1. COMPARISON RESULTS

TABLE 2. PERFORMANCE EVALUATION

Actions Open

Nebula (Sec)

Phoenix (Sec) Difference

(Seconds)

Increase

Host

Creation

(1)

0.1 0.104 0.004 4%

Host

Deletion

(2)

0.15 0.155 0.005 3.33%

VM

Creation

(3)

0.2 0.208 0.008 4%

VM

Deletion

(4)

0.19 0.196 0.006 3.15%

 Average

Increase

3.62%

To test the performance of the tool we used following

scenario. System specifications of the machines used are as

follows: CPU: Dual Core 2 GHz, RAM: 2 GB, OS: Ubuntu

Linux 8.10.

Fig. 4. Graph plotted using data mentioned in Table 3

Three machines connected in Ethernet LAN have been used

in which one of them acted as an OpenNebula server and has

Phoenix Web based management console, with messaging

daemon always on run. Other two machines are configured as

cluster nodes. We tested the delay introduced due to additional

messaging API layer introduced. Results are presented in table

3 and Fig. 4.

X. FUTURE WORK

In addition to the features described in section VI, the

following feature set currently under development will be

available in the future releases.

1. Management of virtual machine templates on the server

2. Web-based VNC interface for managing virtual machines

3. Robust Access control and multi-user management

4. Phoenix as GenomicsCloud administration framework

with Quality of Service (QoS) for guaranteed service

level at real-time.

XI. CONCLUSION

In this paper we presented challenges involved in

Computational Biology applications where enormous

computing power and storage is required. In this context, we

presented virtual infrastructure management framework

Phoenix that aims to extend existing command-line based

management tools into a Web-based tool with security added.

This is an Open-source framework built above OpenNebula to

support VirtualBox and other standard hypervisors. The

drivers developed are seamlessly integrated with current

codebase with the Web based graphical front-end. The

Phoenix framework is to manage GenomicsCloud, the Cloud

Computing environment aligned to specific needs of OMIC

sciences applications. Performance results of Phoenix indicate

that the overhead induced is very less compared to

functionalities introduced in this ecosystem.

REFERENCES

[1] GenBank Statistics:

http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

[2] Fabiana Perocchi, Eugenio Mancera and Lars M. Steinmetz,

Systematic screens for human disease genes, from yeast to human and

back, Mol. BioSyst., 2008, 4, pp 18–29

[3] Brian Hayes, Cloud computing, Communications of the ACM, v.51

n.7, July 2008

[4] Wikipedia, The Free Encyclopedia: www.wikipedia.org

[5] James E. Smith, Ravi Nair, The Architecture of Virtual Machines,

Computer, vol. 38, no. 5, pp. 32-38, May, 2005.

[6] VirtualBox – [URL]. Http://www.virtualbox.org, access on May. 2008

[7] Paul Barham , Boris Dragovic , Keir Fraser , Steven Hand , Tim Harris

, Alex Ho , Rolf Neugebauer , Ian Pratt , Andrew Warfield, Xen and

the art of virtualization, Proceedings of the nineteenth ACM

symposium on Operating systems principles, October 19-22, 2003,

Bolton Landing, NY, USA

[8] Kernel Virtual Machine [URL]. http://www.linux-kvm.org

[9] Amazon Web Services [URL]. http://aws.amazon.com/, access on

May. 2008

[10] Daniel R. Zerbino, Ewan Birney, Velvet: Algorithms for de novo short

read assembly using de Bruijn graphs

[11] Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simpli ed Data

Processing on Large Clusters, Open System Design and

Implementation (OSDI 2004).

[12] Eucalyptus [URL]. http://www.eucalyptus.com/ , access on May2008

[13] Globus Nimbus [URL]. http://workspace.globus.org/, access on May

2008

[14] OpenNebula Project [URL]. http://www.opennebula.org/, access on

May. 2008

[15] Lizhe Wang, Jie Tao, Marcel Kunze, Dharminder Rattu, Alvaro

Canales Castellanos, The Cumulus Project: Build a Scientific Cloud for

a Data Center, Cloud Computing and Applications-08, October 23rd

and 28th, 2008

[16] VMware: www.vmware.com

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 22,2021 at 09:44:29 UTC from IEEE Xplore. Restrictions apply.

