
  194

RESTRAINING ADD-ON’S BEHAVIOR IN PRIVATE
BROWSING

Bapat Ameya D.
Department of Computer Science and Engineering

National Institute of Technology Karnataka
Surathkal, Karnataka, India

ameyabap@gmail.com

Alwyn Pais
Department of Computer Science and Engineering

National Institute of Technology Karnataka
Surathkal, Karnataka, India

alwyn.pais@gmail.com

ABSTRACT
In this paper we address the privacy issues of add-on mechanism
supported by browser in private mode. The add-ons enjoy
unrestrained access to user sensitive information at all times.
This freedom can be misused to create add-ons with malicious
intent of violating privacy of the browser. We have designed and
implemented an add-on which performs this task in private mode
of the browser. This is a clear violation of the goals of private
browsing. Mozilla lacks privacy ensuring mechanism against
add-ons at browser level. So we have modified the source code of
Mozilla Firefox to prevent such behavior of an add-on. It
involves runtime monitoring of add-on‟s behavior in private
mode and notify/block suspicious ones. We have been able to
prevent such add-on‟s activity using our mechanism.

General Terms
Security.

Keywords
Privacy, Private Browsing, Add-ons, Mozilla Firefox.

1. INTRODUCTION
Web browser has been integral part of internet. In modern world
it also plays important role in human‟s professional life. People
use browsers for seeking information, social networking, instant
messaging, blogging etc. Browsers are designed in such a way
that they can record and retrieve information back about user‟s
activities. This information is stored on local machine that can be
accessed by anyone who has access to local machine. This
information includes visited URLs, cookies, user preferences,
searched items etc. Since past 4-5 years most of the browser
companies have been concerned regarding user‟s privacy while
surfing on internet.

Most of the browsers included private mode as an extra
functionality such as InPrivate by Internet Explorer, Incognito by
Google Chrome, Private Browsing by Mozilla Firefox. The

primary goal of private browsing is to keep no trace of user‟s
activities on user machine. The amount of privacy actually
guaranteed by private mode has always been topic of concerned.
Navigation privacy of user majorly depends on browser
parameters such as cookies, history, temporary files etc.

Browser add-ons play prominent role in Modern Browsers.
Current behavior of browsers clean history and cookies at the end
of private session to preserve privacy but at the same time
information can stay behind via add-ons which are not addressed
by browsers. Scope of add-ons can make private session
susceptible to threats. Browsers do not leak cookie or history but
its add-ons can have tracking system which can leak it if they
want.

The Mozilla Firefox grants equal access to add-ons in private
mode as they get in non-private mode. As per the Firefox policy
“the add-on must properly respect private browsing mode by not
recording sensitive data while private browsing mode is active”
[4]. Mozilla is against blocking add-ons as they are open source
and user defined. As per Firefox report, “it has not reviewed all
of the material contained in such add-ons; it cannot be held
accountable for their content or any harm they might cause” [3].
It means when we are in private mode these small applications
can hold our data and send it to anyone. It is also possible that
some add-ons may reveal this information unintentionally, in any
case this is potential privacy risk. It‟s an open challenge to track
suspicious add-ons and restrain them from acting capturer.

Organization of Paper
In section 2 we present the related work in the area of privacy of
add-ons in private mode. Section 3 explains how add-ons
communicate with browser. In Section 4 we discuss the design
and implementation of add-on which exploits the Firefox
vulnerability by tracking user‟s data even in private mode.
Section 5 proposes method to detect suspicious add-ons and
prevent them. Section 6 highlights sensitive data in Firefox and
results of testing phase. We conclude our paper in section 7.

2. RELATED WORK
Several securities related sites have been highlighting the
mentioned problem. Technical papers and surveys have
registered potential add-ons those might expose private data. In
Firefox, binary extensions such as “Cooliris” execute with the
same permissions as those of the user, these extensions can
read/write to any file on disk hence binary extensions are said to
be unsafe for private browsing. Most of the extensions are based
on javascript[JS]. They need to be checked for write operation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SecurIT’12, August 17-19, 2012, Kollam, Kerala, India
Copyright 2012 ACM 978-1-4503-1822-8/12/08... $15.00

  195

hence, manual scanning of files that are written then tells
whether extension violates privacy or not [1]. The following are
results found by Gaurav Aggrawal, Dan Boneh in their paper[1]:
There is an extension such as “1-Click YouTube Video
Download” writes list of videos to be downloaded on file,
whereas “FastestFox” writes bookmarks on a file. Write
operations are most dangerous as they nullifies privacy measures
taken by private browsers.
Categories of the most common violations are as follows:
1. URL queues: Extensions such as “DownThemAll” maintain a
queue of URLs to download. This queue is maintained to disk
even in private mode till download completes. Download might
not complete in same private mode session which makes
information available outside private mode.
2. URL mapping: Extensions such as “Stylish” allow different
CSS styles for viewing pages from different sites. Styles to site
pairs are persisted to disk even in private browsing.
3. Timestamp: The extensions store timestamp values on disk.
Extension such as “personos” store when was the last time theme
changed even in private browsing. This can be used to track the
time when private browsing was used based on time in history
and time stored by above extension.
Current browsers give an option to allow all or block all add-ons
in private mode. Most of the add-ons don‟t follow private
browsing so they might get blocked. Hence, it has been
recommended that browser vendor should provide APIs which
would help developers to decide which data should be stored
during private browsing and which should not.
There have been attempts made to block potential add-ons by
building another add-on such as ExtensionBlocker [1]. It disables
all unsafe add-ons and enables them when mode is changed. An
extension is considered safe for private mode if its manifest file
contains a new XML tag <privateModeCompatible/>.
The add-ons operate with the user‟s full privileges. Adam barth
analyzed and found that 88% of 25 popular Firefox extensions
require less than the full set of privileges [17]. They also found
that 76% of these extensions use unnecessarily powerful APIs. It
is also needed to check extensions that unnecessarily use APIs
dealing with sensitive information in private mode.
Previous research talk about malicious add-ons or spying add-ons
and only few looked at it from private browsing aspect. There is
no browser level prevention method against such violations.

3. ADD-ON AND BROWSER
INTERACTION
Firefox enables users to expand browser‟s functionality by
allowing them to create own add-ons. Firefox has modular and
layered structure which creates basic foundation for users to
design add-ons. There are some famous extensions written in
Javascript such as NoScript, which disables JavaScript to
improve security, Firebug gives various tools for web developers.

Web JS Addon JS Chrome JS

XPConnect [Acts as Gateway]

XPCOM [Code In C++, JS, Python]

Javascript

Figure 1. Interaction between JS and XPCOM

The Cross Platform Component Object Model (XPCOM) is a
simple, cross platform component model. It contains Interface
Description Languages[IDL] which helps programmers to plug
their functionality into the framework and connect it with other
components [10].
The XPCOM allows JS add-ons to access independent Firefox
components written in different languages such as JS, C++,
python via common interface [5]. XPCOM helps to build a
module in which large task can be broken into smaller pieces
which are known as components [13]. Each component is
uniquely identified by 128-bit number called interface ID.
The Cross Platform Connect [XPConnect] is intermediate layer
allows Javascript in Firefox to access XPCOM components.
“With XPConnect, we can use XPCOM components from
JavaScript code, and interact with JavaScript objects from within
XPCOM components” [16]. It can be considered as bridge
between Javascript and XPCOM components. Its service
manager calls service manager of XPCOM. XPConnect does not
have filtering mechanism as a result it grants both browser
[chrome] JSs and add-on JSs full access to browser components.

4. EXPLOITING VULNERABILITY
The Firefox add-on called “Capture_Data” is designed and
implemented in such a way to track browsing history, cookies
and store them on secondary storage in private browsing mode.
During non-private mode Firefox maintains database of browsing
history and cookies but in private mode it does not. The browsing
is monitored at real time and corresponding URLs and cookies
are tracked and stored.
The following figure shows operation of Firefox Add-on
Capture_Data:

  196

Figure 1. WorkFlow of Capture_Data.

Even though browser clears sensitive data once it is closed, we
can easily track behaviour or habits of respective user during
active session. It completely violates the goals of private mode as
well as launches successful attack on browser.

5. DEFENSE MECHANISM
The differences between claimed and implemented goals make
this domain open to research. This attack can be prevented by
two ways, one of them is by blocking all add-ons in private mode
which is not acceptable as it completely blocks benefits of add-
ons. Second approach is to a design mechanism which will
monitor behavior of add-ons based on some rules, guidelines and
take actions such as block or allow which are necessary to
maintain privacy.
The second approach can be designed in two ways:
1. Build an add-on to monitor working of other add-ons and
gives an alarm or blocks respective one, if malicious.
2. To tweak browser code itself so that it takes extra care in
private mode. The browser can be improved to scrutinize add-on
behavior before granting access to sensitive data.
In general add-ons are not trusted completely and it is never
preferred that one add-on is used to control other as either can‟t
be trusted. The browser code modification is better approach
because browser itself would take care of own privacy.
In order to enforce monitoring on extensions, it is necessary to
identify the extension requesting sensitive XPCOM services.
“Once an extension is installed, the browser does not
differentiate between extension script and browser script because
to characteristic of overlays” [2].
If a typical security manager detects a script that is accessing a
XPCOM component then also it could not tell whether the script
is owned by the browser or by an extension. Even if a script
belongs to an add-on, there is no method or function which
would tell the owner add-on of a script. It is required to filter
script URLs that belong to add-on‟s code.
The following figure shows workflow of solution:

Figure 2. WorkFlow of Filtering Mechanism

The algorithm depicts major modules of filtering mechanism:
1. Start Browser
2. Loads Add-ons
3. Browsing Operation
4. IF Private Mode ON goto 5 Else goto 3
5. Monitor Calls to Sensitive Interfaces listed

in Table 1.
6. Identify Caller Script URLs
7. Match Caller Script URL with Add-on‟s

URL.
8. If Match Found YES goto 9, NO goto 4
9. Prompt User to Disable/Allow Add-on
10. Goto 4.
Filtering needs following major steps:

5.1 Identify Caller Script
The objective is to find caller script which accesses specific
interfaces. The conventional method to access any service such as
cookie manager via interface is as follows:

Ex: CookieManager

Var cookie=
Components.classes["@mozilla.org/cookiemanager;1"].

getService(Components.interfaces.nsICookieManager);
The add-on script which has above code can access cookies
irrespective of mode of browsing. The getService method and
eventually XPConnect is responsible to call nsICookieManager.
The section 4 explains that JS always pass through XPConnect
layer. The getService method is modified to get URLs of caller
scripts [15]. JS engine maintains stack of calls via nsIStackFrame
interface which is accessed in source code of getService. It helps
to track script URLs that call getservice method. Those URLs

  197

Figure 1. WorkFlow of Capture_Data.

Even though browser clears sensitive data once it is closed, we
can easily track behaviour or habits of respective user during
active session. It completely violates the goals of private mode as
well as launches successful attack on browser.

5. DEFENSE MECHANISM
The differences between claimed and implemented goals make
this domain open to research. This attack can be prevented by
two ways, one of them is by blocking all add-ons in private mode
which is not acceptable as it completely blocks benefits of add-
ons. Second approach is to a design mechanism which will
monitor behavior of add-ons based on some rules, guidelines and
take actions such as block or allow which are necessary to
maintain privacy.
The second approach can be designed in two ways:
1. Build an add-on to monitor working of other add-ons and
gives an alarm or blocks respective one, if malicious.
2. To tweak browser code itself so that it takes extra care in
private mode. The browser can be improved to scrutinize add-on
behavior before granting access to sensitive data.
In general add-ons are not trusted completely and it is never
preferred that one add-on is used to control other as either can‟t
be trusted. The browser code modification is better approach
because browser itself would take care of own privacy.
In order to enforce monitoring on extensions, it is necessary to
identify the extension requesting sensitive XPCOM services.
“Once an extension is installed, the browser does not
differentiate between extension script and browser script because
to characteristic of overlays” [2].
If a typical security manager detects a script that is accessing a
XPCOM component then also it could not tell whether the script
is owned by the browser or by an extension. Even if a script
belongs to an add-on, there is no method or function which
would tell the owner add-on of a script. It is required to filter
script URLs that belong to add-on‟s code.
The following figure shows workflow of solution:

Figure 2. WorkFlow of Filtering Mechanism

The algorithm depicts major modules of filtering mechanism:
1. Start Browser
2. Loads Add-ons
3. Browsing Operation
4. IF Private Mode ON goto 5 Else goto 3
5. Monitor Calls to Sensitive Interfaces listed

in Table 1.
6. Identify Caller Script URLs
7. Match Caller Script URL with Add-on‟s

URL.
8. If Match Found YES goto 9, NO goto 4
9. Prompt User to Disable/Allow Add-on
10. Goto 4.
Filtering needs following major steps:

5.1 Identify Caller Script
The objective is to find caller script which accesses specific
interfaces. The conventional method to access any service such as
cookie manager via interface is as follows:

Ex: CookieManager

Var cookie=
Components.classes["@mozilla.org/cookiemanager;1"].

getService(Components.interfaces.nsICookieManager);
The add-on script which has above code can access cookies
irrespective of mode of browsing. The getService method and
eventually XPConnect is responsible to call nsICookieManager.
The section 4 explains that JS always pass through XPConnect
layer. The getService method is modified to get URLs of caller
scripts [15]. JS engine maintains stack of calls via nsIStackFrame
interface which is accessed in source code of getService. It helps
to track script URLs that call getservice method. Those URLs

can be dumped and logged in temporary file. It is possible to
identify caller script of nsICookieManager. If URL belongs to an
add-on then privacy policies are applied on respective it. Above
approach is generalized to remaining user sensitive interfaces
discussed in Table 1.
The XPCOM JS component such as AddonMapper is created
which is called from getService method. The script urls are
classified in schemes such as „chrome‟[8] or „resource‟[9]. In
order to match them with add-on‟s resources, script URLs need
to be converted into scheme „file‟, which represents their real
path.

5.2 Identify Add-on
Next task is to find whether the script that calls sensitive
interfaces belongs to Add-on or not. We need URLs of running
add-ons to compare with script URL. The JS XPCOM
AddonMapper component checks whether passed script URL
belongs to add-ons. Mozilla‟s AddonManager is used to retrieve
information regarding add-ons [14].
If suspicious add-on is found then user would be alerted with
details and asked for permission to block or allow respective
add-on.

5.3 Pre-Private Mode Disabling
The extensibility of Mozilla Firefox is based on overlay features.
It means the moment overlays are merged, there is no distinction
between extension scripts and browser code. The add-ons could
be used to modify graphical user interface of browser. Hence,
browser restart is necessary for enabling or disabling of add-on
comes in effect.
The flow of disabling mechanism:
1. The user is alerted when a suspicious add-on is found. Add-

on‟s information is prompted and also stored in sqlite
(“Sqlite Storage”) database such as “blacklist_add-
ons.sqlite”.

2. The moment user tries to enter into private mode, database is
retrieved and stored add-ons are disabled. Browser is forced
to restart directly into private mode [PM] such that disabling
takes place.

3. Blacklisted add-ons are suspicious only in the scope of PM
hence, all disabled add-ons are re-enabled as soon as user
comes out of PM.

The restart operation could be said as overhead but it is
mandatory for disable/enable operations.

6. IMPLEMENTATION DETAILS
Attack and defense mechanism is implemented on the latest
version of browser which is Mozilla Firefox Nightly 12.0a1. The
Firefox asks add-on developers to respect private browsing by
not accessing or holding the user parameter.
Mozilla Firefox defines data as sensitive based on following
parameters [4]:

1. URLs of visited pages.

2. Domains of visited sites.

3. Content of visited pages.

4. All data related to visited pages, including cookies and
form data.

5. Data used to customize the Firefox user interface based
on activities in private browsing mode.

Following Services can be considered as sensitive [6]:

Table 1. Sensitive Services with their interfaces

Service Interfaces

Files/Streams
nsIOutputStream, nsILocalFile,
nsIFile, nsIPropertises
nsIFileOutputStream

History nsISHistoryListener,
nsIBrowserHistory

Cookies nsICookieManager,
nsICookieService, nsICookie2

Bookmarks nsIRDFDataSource.

Cache Data nsICacheService

Network
nsIHttpChannelInternal,
nsIXMLHttpRequest,
nsIHttpChannel

Login nsILoginInfo, nsILoginManager

Download nsIDownload,
nsIDownloadManager

To Hold a set of
name/value pairs nsIFormHistory2

Accessing i/o
streams
to resource

nsITransport

To Save
preferences for
specific websites

nsIContentPrefService

Preferences nsIPrefService, nsIPrefBranch

Listener on open
top-level windows. nsIWindowWatcher

keeps track of
open windows nsIWindowMediator

Executable
process nsIProcess

Authorised tokens nsISecretDecoderRing.

  198

Permissions for
(cookies, images
etc.) on site basis.

nsIPermissionManager

Image Cache imgICache

plugin data phInterface

Add-ons are not supposed to access interfaces listed in Table 1.
Proposed restraining method is tested on 50 popular add-ons
from categories such as Alert and Updates, Privacy and Security,
Social Communication, Download management, Bookmarks,
Photo and video [11]. Add-ons are certified by Mozilla under
Mozilla Public License which says “The entire risk as to the
quality and performance of the covered code is with you. Should
any covered code prove defective in any respect, you (not the
initial developer or any other contributor) assume the cost of any
necessary servicing, repair or correction” [7]. So are add-ons
really respecting private mode? Our approach makes browser
capable of finding an answer.
The following list contains add-ons that found suspicious in
private browsing because they access sensitive interfaces:

Table 2. Denotes Suspicious Firefox Add-ons.

Javascript
Add-ons

Sensitive Interface Threat
Level

Export
Cookies

nsICookieManager High

PremiumPl
ay Codec-V

nsICookieService High

List It nsILoginManager,
nsIWindowMediator

High

Ad blocker nsICacheservice High
Download
helper

nsIWindowMediator,
nsIRDFDataSource,nsILogin
Manager,nsIProperties

High

pdf
download

nsIBrowserHistory High

Chatzilla nsIProperties,
nsIWindowWatcher

High

All in one
sidebar

nsIWindowWatcher,
nsIWindowMediator

Medium

MemChase
r

nsIWindowWatcher,nsIWindo
wMediator, nsIProperties

High

Missing e nsIWindowWatcher,
nsIProperties,
nsIWindowMediator

High

Xmarks
Sync

nsIPrefService Medium

IE tab 2 nsIFile High
Password
Exporter

nsILoginManager High

StumbleUp
on

nsIPermisiionManager Medium

Download
StatusBar

nsIWindowWatcher Medium

Session nsIWindowWatcher Medium

Manager
Ghostery nsIProperties High
Tabletools2 nsIProperties High
Modify
Headers

nsIPropertises,
nsIWindowMediator

High

Fast video
download

nsIProperties,
nsIWindowMediator

High

Fastest
search

nsIProperties,
nsIWindowMediator

High

Zotero nsLocalFile,
nsIWindowMediator

High

FB chat
history
Manager

nsIProperties High

Coolprevie
ws

nsIProperties High

Stylish nsIWindowMediator,
nsIProperties

Medium

Last pass nsIWindowMediator Low
Forecastfox nsIWindowMediator Low
Fox tab nsIWindowMediator Low
Fastest fox nsIWindowMediator Low
FB Chat
Sidebar

nsIWindowMediator Low

Facebook
Toolbar

nsIWindowMediator Low

web mail
ad blocker

nsIWindowMediator Low

Image Like
Opera

nsIWindowMediator Low

6.1 Comparison with Related Research
The results obtained by Adam Barth are tested as per our
approach [17]. We tested same 25 extensions on our
implementation to evaluate whether they respect private mode or
not. Our approach also detects extensions that unnecessarily use
sensitive interfaces in private mode. Out of 25 extensions 10
could be classified as suspicious for private browsing.
The list of extensions is as follows:
The Coolpreview and DownloadHelper are already included in
Table 2. Fission, WeatherBug are not compatible with Firefox
12.01a which is modified during our approach.

Table 3. Comparison with Related Research

Javascript
Add-ons

Sensitive Interface Threat
Level

Twitterfox nsILoginManager,
nsIWindowMediator

High

Delicious
Bookmarks

nsIPermissionManager,
nsICookieManager,
nsIWindowMediator

High

Glue nsIProperties,
nsIWindowMediator

High

AutoPager nsIProperties,
nsIWindowMediator

High

Download nsIDownloadManager Medium

  199

Status Bar

Zemanta nsIProperties, High

Multiple Tab
Handler

nsIWindowMediator Medium

Lazarus: Form
Recovery

nsIWindowMediator, Low

The bug/enhancement and patch to the source code of Firefox is
filed at bugzilla.mozilla.org for review [18]. The concept is well
appreciated by Mozilla community. It is under discussion where
modifications are being suggested in order to make it possible for
actual inclusion.
All of them do not steal information but they can use interfaces
detected in Table 2. to record information. Mozilla scans Firefox
add-ons at remote level [12] but it does not step up towards
adding filtering or sandboxing at browser level. Our modification
in source code adds missing filtering at browser level.
7. CONCLUSION AND FUTURE WORK
We have presented an approach which successfully attempts to
exploit vulnerability of Mozilla Firefox‟s private browsing by
creating add-on such as “capture_data”. We have also modified
the source code of Mozilla Firefox, so that it detects suspicious
add-ons that try to access user sensitive data items. Our approach
adds privacy protection at browser level which is missing in
current implementation. It could also be used to detect poorly
coded add-ons which do not respect private browsing.
First task as a future work would be to get it approved by
Mozilla Community so that mentioned concept would be
incorporated into Firefox. Current implementation of patch
would be modified as per requirement of Firefox community.
It is possible to monitor behavior of JS methods owned by
Mozilla. Add-on may contain web JS such as
window.addEventListener which is not owned by Mozilla. It can
track browser‟s address bar and store that on file even in private
mode. It is difficult to monitor such JSs. We would also address
this issue in future work. It is required to modify the JS engine of
Mozilla in private browsing such that it would categorize the
suspicious web JS methods and make extra efforts to maintain its
stack. As a result suspicious Add-on would be discovered once
sensitive web JS would be accessed, even before their file
operation takes place.

8. REFERENCES
[1] Aggrawal. G., E. B., C. J., and Boneh. 2010. An analysis of

private browsing modes in modern browsers. In
Proceedings of 19th Usenix Security Symposium.

[2] Lim. J. S., and Venkatakrishnan. 2007. Policy-based
Runtime Monitor for Browser Extensions. Technical Report,

Dept. of Computer Science, University of Illinois at
Chicago.

[3] Is private browsing really private? Identifying Web browser
 risk, June 2011 http://searchsecurity.techtarget.com/tip/Is-
private-browsing-really-private-Identifying-Web-browser-
risk

[4] Mozilla Firefox - Supporting private browsing mode
https://developer.mozilla.org/En/Supporting_private_browsi
ng_mode

[5] Mozilla XPCOM https://developer.mozilla.org/en/XPCOM
[6] Sanitized Interfaces https://mxr.mozilla.org/mozilla-

central/source/browser/base/content/sanitize.js
[7] Mozilla Public License Version 1.1

http://www.mozilla.org/MPL/1.1/
[8] The Chrome URL

https://developer.mozilla.org/en/XUL_Tutorial/The_Chrome
_URL

[9] Using JavaScript code modules
https://developer.mozilla.org/en/JavaScript_code_modules/
Using#Extending_resource:_URLs

[10] Mozilla XPCOM https://developer.mozilla.org/cs/XPCOM
[11] Add-ons for Mozilla. https://addons.mozilla.org/en-

US/firefox/
[12] Add-on Submission Process: Criteria for Submission

https://addons.mozilla.org/en-
US/developers/docs/policies/submission

[13] Creating XPCOM Component
https://developer.mozilla.org/en/Creating_XPCOM_Compo
nents

[14] Addon Manager Object.
https://developer.mozilla.org/en/Addons/Add-
on_Manager/AddonManager

[15] XPCJSID : GetService Method Implementation.
http://dxr.lanedo.com/mozilla-
central/js/xpconnect/src/XPCJSID.cpp#l783

[16] Mozilla XPConnect
https://developer.mozilla.org/en/XPConnect

[17] Barth. A., F. A., S. P and Boodman. 2009. Protecting
Browsers from Extension Vulnerabilities. Technical Report
No. UCB/EECS-2009-185, EECS Department, University of
California, Berkeley.

[18] Bug 761950 - Restraining Add-on's behavior in Private
 Browsing Mode
 https://bugzilla.mozilla.org/show_bug.cgi?id=761950

