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Abstract

We present a new semi-local convergence analysis for an inverse free Broy-
den - type Banach to Hilbert space scheme (BTS) in order to approxi-
mate a locally unique solution of an equation. The analysis is based on
a center-Lipschitz-type condition and our idea of the restricted conver-
gence region. The operators involved have regularly continuous divided
differences. This way we provide, weaker sufficient semi-local convergence
conditions, tighter error bounds, and a more precise information on the
location of the solution. Hence, our approach extends the applicability of
BTS under the same hypotheses as before.
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1 Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x? of equation

F (x) = 0, (1)
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where F is a continuous operator defined on a open convex subset Ω of a Banach
space B with values in a Hilbert space H.

Broyden’s method BM

x+ = x−A F (x), y = F (x+)−F (x), A+ = A− A F (x+) 〈A∗AF (x), .〉
〈A∗AF (x), F (x+) − F (x)〉

,

(2)
where L(H,B) := {A : H −→ B, bounded and linear}, A∗ is the adjoint of A,
and 〈·, ·〉 stands for the inner product in H.

A plethora of convergence results for this type of schemes have appeared in
the literature [1, 3, 5, 8, 9, 10, 11] (see also, e.g. [4], and the references there
in). BTS requires no inverse, so no linear subproblem needs to be solved at each
iteration.

The convergence region for such methods is small in general [12, 13, 14, 15].
In the present study, we extend the convergence region for BTS. To achieve
this goal, we first introduce the center-Lipschitz condition which determines a
subset of the original region for the operator containing the iterates. The scalar
functions are then related to the subset instead of the original region. This way,
the scalar functions are more precise than if they were depending on the original
region. The new technique leads to : weaker sufficient convergence conditions,
tighter error bounds on the distances involved, and an at least as precise infor-
mation on the location of the solution. These advantages are obtained under
the same computational cost as in earlier studies [8, 9, 10, 11], since in practice
the new functions are special cases of the old functions. This idea can be used
to study other iterative methods [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

The rest of the study is structured as follows. Section 2 contains some
preliminary results for regularly continuous dd. In Section 3, we provide the
semi-local convergence analysis of BTS.

2 Preliminaries: regularly continuous dd

In order to make the paper as self–contained as possible, we reintroduce some
definitions and some results on regularly continuous dd. The proofs are omitted,
and can be found in [4, 11]. In this section, B and H are Banach spaces,
equipped with the norm ‖ . ‖. We denote by U (z, R) = {x ∈ B : ‖ x− z ‖< R, }
the open ball centered at z and of radius R > 0, whereas U (z, R) denotes its
closure. For x ∈ B, denote by Kx the subspace of operators vanishing at x
Kx = {A ∈ L(B, H) : A x = 0}. Let N be the class of increasing concave
functions v : R+ −→ R+, with v(0) = 0. Note that N contains the functions
in the form ϕ(t) = c tp, (c ≥ 0, and p ∈ (0, 1]).

Definition 2.1. [11] An operator [., .; F ] belonging in L(B, H) is called the first
order divided difference (briefly dd) of F at the points x and y in B (x 6= y), if
the following secant equation holds [x, y; F ] (y − x) = F (y) − F (x).
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If F is Fréchet differentiable at x, then [x, x; F ] = F ′(x). Otherwise, the

following limit (if it exists) limt↘0[x, x + t h; F ] h = limt↘0
F (x + t h) − F (x)

t
vary according to h, with ‖ h ‖= 1, and this limit is the Fréchet derivative (or
the directional derivative) F ′(x) h of F in the direction h (i.e., if we suppose that
F is Fréchet differentiable at x, then the Fréchet derivative is characterized as
a limit of dd in the uniform topology of the space of continuous linear mappings
of B into H).

Remark 2.2. (a) Let (x, y) ∈ B × H, the set {A ∈ L(B, H) : A x = y}
constitute an affine manifold in L(B, H).

(b) Let A and A0 in L(B, H), and (x, y) ∈ B × H, such that A0 x = A x = y.
Then (A − A0) x = 0, and A ∈ A0 + Kx.

The following result gives some properties of set–valued mapping Υx,y :
C(B, H) ⇒ L(B, H) given by Υx,y(F ) = [x, y; F ] for the pair (x, y) ∈ B2.

Proposition 2.3. (a) Υx,y(F ) = F if and only if F is linear.

(b) Υx,y is linear, i.e., for F1, F2 in C(B, H), and (α, β) ∈ K2 (K = R or C),
we have

Υx,y(αF1 + β F2) = αΥx,y(F1) + β Υx,y(F2).

(c) If F is a composition of operators F1 and F2 (i.e., F = F1 ◦ F2), then

Υx,y(F ) = ΥF2(x),F2(y)(F1) Υx,y(F2).

Definition 2.4. [11] The dd [x, y; F ] is said to be w1–regularly continuous on
Ω ⊆ B for w1 ∈ N (call it regularity modulus), if the following inequality holds
for each x, y, u, v ∈ Ω

w−1
1

(
min{‖ [x, y; F ] ‖, ‖ [u, v; F ] ‖}+ ‖ [x, y; F ]− [u, v; F ] ‖

)

−w−1
1

(
min{‖ [x, y; F ] ‖, ‖ [u, v; F ] ‖}

)
≤‖ x − u ‖ + ‖ y − v ‖ .

(3)

The dd [x, y; F ] is said to be regularly continuous on Ω, if it has there a
regularity modulus.

We introduce a special notion (see also [5, 6, 7]).

Definition 2.5. The dd [x, y; F ] is said to be w0− center regularly continuous
on Ω ⊂ X for w0 ∈ N (call it center regularity modulus), if for fixed x−1, x0 ∈ Ω
the following inequality holds for each x, y in Ω

w−1
0

(
min{‖ [x, y; F ] ‖, ‖ [x0, x−1; F ] ‖}+ ‖ [x, y; F ]− [x0, x−1; F ] ‖

)

−w−1
0

(
min{‖ [x, y; F ] ‖, ‖ [x0, x−1; F ] ‖}

)
≤‖ x − x0 ‖ + ‖ y − x−1 ‖ .

(4)
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Clearly, we have that Definition 2.5 is a special case of Definition 2.4,

w0(t) ≤ w1(t) for each t ∈ [0,∞), (5)

holds in general, and
w1

w0
can be arbitrarily large [2, 4]. If w0, w1 are linear

functions (w1(t) = c1 t and w0(t) = c0 t), then (4), and (5) become Lipschitz,
and center–Lipschitz continuous conditions, respectively, i.e., the following hold
respectively for each (x, y, u, v) ∈ Ω4:

‖ [x, y; F ]− [u, v; F ] ‖≤ c1 (‖ x − u ‖ + ‖ y − v ‖) (6)

and
‖ [x, y; F ]− [x0, x−1; F ] ‖≤ c0 (‖ x − x0 ‖ + ‖ y − x−1 ‖). (7)

Then, estimate (5) gives
c0 ≤ c1. (8)

We need the following auxiliary result.

Lemma 2.6. [9] If dd [x, y; F ] is w–regularly continuous on Ω, then we have

|w−1
1 (‖ [x, y; F ] ‖)−w−1

1 (‖ [u, v; F ] ‖)| ≤‖ x−u ‖ + ‖ y−v ‖, for each (x, y, u, v) ∈ Ω4.

Then, the following holds for all (x, y, u, v) ∈ Ω4:

w−1
1 (‖ [x, y; F ] ‖) ≥ (w−1

1 (‖ [u, v; F ] ‖)− ‖ x − u ‖ − ‖ y − v ‖)+, (9)

where ρ+ (ρ ∈ R) denotes the nonnegative part of ρ: ρ+ = max{ρ, 0}.
In particular, if dd [x, y; F ] is w0–regularly continuous on Ω (i.e., condi-

tion (4) holds), then, (9) holds, with w0, x0, and x−1 replacing w, u, and v,
respectively.

Suppose that equation
w0(t) = 1 (10)

has at least one positive solution. Denote by r0 the smallest such solution.
Moreover, define

Ω0 = Ω ∩ U (x0, r0). (11)

Notice also that we have a similar estimate for function w on Ω4.

Definition 2.7. The dd [x, y; F ] is said to be restricted w−regularly continuous
on Ω0 ⊂ Ω for w ∈ N , if the following inequality holds for each x, y, u, v ∈ Ω0

w−1

(
min{‖ [x, y; F ] ‖, ‖ [u, v; F ] ‖}+ ‖ [x, y; F ]− [u, v; F ] ‖

)

−w−1

(
min{‖ [x, y; F ] ‖, ‖ [u, v; F ] ‖}

)
≤‖ x − u ‖ + ‖ y − v ‖ .

(12)
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Notice that
w(t) ≤ w1(t) for each t ∈ [0, r0) (13)

holds, since Ω0 ⊆ Ω. Function w depends on function w0. The construction
of function w was not possible before in the earlier studies using only function
w1[11]. Clearly, in those studies w can simply replace w1, since the iterates lie in
Ω0 related to w, which is a more precise location than Ω used in [11] related to
w1. This modification leads to the already stated advantages, if strict inequality
holds in (5) or (13).

We suppose from now on that

w0(t) ≤ w(t) for each t ∈ [0, r0). (14)

3 Semi-local convergence analysis of BTS

We present a semi-local convergence result for BTS. The proofs are the proper
modifications of the ones in [11], where, we use the more precise (4), (12) instead
of (3) and w instead of w1.. First, we denote

A0 = [x0, x−1; F ]−1. (15)

As in [11], for the selected dd [x, y; F ], such that (3) holds with w modulus,
we associate the current iteration (x, A), and we consider q = (t, γ, δ), where

t =‖ x − x0 ‖, γ =‖ x − x− ‖, δ =‖ x+ − x ‖ .

The next, auxiliary result relates δ̄+ := ‖x++ − x+‖ = ‖A+F (x+)‖ with the
triple (t̄, γ̄, δ̄). For briefing we denote

α0 := w−1
0 (1 − h), α = w−1(1 − h), γ̄0 := ‖x0 − x−1‖, a := α − γ̄0.

Lemma 3.1. Let the selected dd[x1, x2; F ] of F be restricted w−regularity con-
tinuous on Ω0. If t̄+ + t̄ < a, then

δ̄+ ≤ δ̄

(
w(a − t̄+ − t̄ + δ̄ + γ̄) − w(a − t̄+ − t̄)

w0(a − t̄+ − t̄)

)
≤ δ̄

(
w(a − t̄+ − t̄ + δ̄ + γ̄)

w0(a − t̄+ − t̄)
− 1

)
.

(16)

In view of the lemma we have the following majorant generator g(t, γ, δ) =
(t+, γ+, δ+) :

t+ := t + δ, γ+ := δ,

δ̄+ = δ̄

(
w(a − t+ − t + δ + γ)

w0(a − t+ − t)
− 1

)
= δ̄

(
w(a − 2t + γ)
w0(a − 2t − δ)

− 1
)

. (17)

We say that the triple q′ = (t′, γ′, δ′) majorizes q = (t, γ, δ)( i.e.q ≺ q′), if

t ≤ t′ and γ ≤ γ′ and δ ≤ δ′.
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So by the above lemmas q̄+ ≺ f(q̄). Starting with the initial triple q0, the
generator iterates producing a majorant sequence as long as (17) remains defined
and

2tn + δn < a.

Under the above condition, the sequence (xn, An) generated by the method (2)
starting with (x0, A0) converge to a solution of the system

F (x) = 0 and A[x, x; F ] = I. (18)

Lemma 3.2. If q0 is such that q̄0 ≺ q0 and 2tn + δn < a, then

(i) q̄n ≺ qn;

(ii) γ∞ = δ∞ = 0 and tn ≤ 1
2
(a − δn);

(iii) The sequence (xn, An) remains in the ball B((x0, A0), (t∞, rA)). where

rA :=
w(a − δ0) − w(a − 2t∞)
w(a − δ0)w(a − 2t∞)

+
w(a + γ0) − w(a − δ0)

1 − w(a + γ0) + w(a − δ0)
,

and converges to a solution (x∞, A∞) of the system (18).

(iv) x∞ is the only solution of the equation F (x) = 0 in the ball B(x0, a− t∞);

(v) For all n = 0, 1, 2, . . .,

‖F (xn+1)‖ ≤ δn(w(a − 2tn + γn) − w(a − 2tn − δn)),

∆n := ‖x∞ − xn‖ ≤ t∞ − tn, ‖

∆n+1

∆n
≤ w(∆n−1

w(a − 2tn + γn)
;

(vi) All these inequalities are exact in the sense that they hold as equalities for
a scalar quadratic polynomial.

We have seen in Lemma 3.2, that the convergence of xn is guaranteed, if one
chooses x−1, x0, A0, q0 such that q̄0 ≺ q0 and 2tn + δn < a. So, our next task is
to find the set of all q0 which satisfies 2tn + δn < a.

For linear w(w(t) = ct)), (17) takes the form

t+ := t + δ, γ+ := δ, δ+ := δ
γ + δ

a − 2t − δ
, (19)

where a = c−1 − ‖x0 − x−1‖. This way, we have the following Proposition.

Proposition 3.3. (i) The function I(t, γ, δ) := (a − 2t)2 − 4δ(a − 2t + γ) is
an invariant of the generator (19).
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(ii) The sequence (tn, γn, δn), generated by (19) starting from(0, γ0, δ0), con-
verges if and only if

I0 := I(0, γ0, δ0) = (c−1 − γ0)2 − 4c−1δ0) ≥ 0,

and

2tn+δn < a ⇔ tn =
1
2
(c−1−γ0)−δn−

√
δn(γn + δn) + 0.25I0 =: F (γn, δn).

(iii) The function F is a solution of the system

x

(
δ, δ

γ + δ

a − 2x(γ, δ) − δ

)
= x(γ, δ) + δ and x(0, 0) = t∞. (20)

In view of the above Proposition, we have the following Theorem.

Theorem 3.4. Let the selected dd[x1, x2; F ] of F be restricted w−regularity
continuous on Ω0. If the initial data x0, A0, γ0, δ0 are such that

‖x0 − x−1‖ ≤ γ0 and ‖A0F (x0)‖ ≤ δ0 ≤ F∞(0, γ0),

then

(i) γ∞ = δ∞ = 0 and

(‖xn−x0‖ ≤ tn ≤ 1
2
(a−δn) and ‖xn−xn−1‖ ≤ γn and ‖xn+1−xn‖ ≤ δn);

(ii) The sequence (xn, An) from the initial data (x0, A0) converges to a solution
(x∞, A∞) of the system (15);

(iii) x∞ is the only solution of the equation F (x) = 0 in the ball B(x0, a− t∞);

(iv) For all n = 0, 1, 2, . . .,

‖F (xn+1)‖ ≤ δn(w(a − 2tn + γn) − w(a − 2tn − δn)),

∆n := ‖x∞ − xn‖ ≤ t∞ − tn, ‖

∆n+1

∆n
≤ ∆n−1

w(a − 2tn + γn)
.

Corollary 3.5. Let the selected dd[x1, x2; F ] of F be restricted Lipschitz con-
tinuous on Ω. If the initial data x0, x−1, A0, γ0, δ0 are such that

‖x0 − x−1‖ ≤ γ0 and , ‖A0F (x0)‖ ≤ δ0 ≤ a2

4(a + γ0)
,

then
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(i) γ∞ = δ∞ = 0, I0 := (c−1 − γ0)2 − 4c−1δ0 ≥ 0 and for all n ≥ 1

(‖xn − x0‖ ≤ tn ≤
1
2
(c−1 − γ0 − δ0 −

√
δ2
n + γnδn + 0.25I0),

‖xn − xn−1‖ ≤ γn,

‖F (xn+1)‖ ≤ δn.

(ii) The sequence (xn, An) from the initial data (x0, A0) remains in the ball
B((x0, A0), (t∞, rA)), where

t∞ =
1
2
(c−1 − γ0 −

√
I0), rA :=

c−1 − γ0 − δ0 −
√

I0

c(c−1 − γ0 − δ0)
√

I0

+
γ0 + δ0

1 − c(γ0 + δ0)
,

and converges to a solution (x∞, A∞) of the system

F (x) = 0 and A[x, x; F ]+ I;

(iii) x∞ is the only solution of the equation F (x) = 0 in the ball B(x0, 0.5(a−
t∞));

(iv) For each n = 0, 1, 2, . . .,

‖F (xn+1)‖ ≤ cδn(γn + δn),

∆n := ‖x∞ − xn‖ ≤ δn +
√

δ2
n + γnδn + 0.25I0 − 0.5

√
I0,

∆n+1

∆n
≤ ∆n−1

γn + 2
√

γ2
n + γnγn−1 + 0.25I0

.

Remark 3.6. (a) The results obtained in this study reduce to the correspond-
ing ones in [11], if equality holds in (5) and (14), i.e.,w0(t) = w(t) =
w1(t). Otherwise, our results provide weaker sufficient convergence con-
ditions, error bounds than in [11] (see also the definition of a and a0).
Moreover, the information on the uniqueness of the solution x? is more
precise, since a0 − t∞ > a − t∞. As an example (16) is given in [11] with
w0, w replacing w1 leading to a less precise estimate. Similar comments
can be made for the other estimates.
Using (3), (4) and our idea of restricted convergence region, but not
(12), we have already obtained weaker sufficient convergence conditions
for many iterative methods such as Newton’s, Secant, and Newton–type
methods (under very general conditions [1, 2, 3, 4, 5, 6, 7]). In particu-
lar, our work using regularly continuous divided differences can be found
in [5].

(b) If w(t) ≤ w0(t) for all t ∈ [0, r0) holds instead of (14), then clearly function
w0 (still at least as small as function w1) can replace w in the preceding
results.

(c) If Ω0 is replaced by Ω∗
0 =

⋃
(x1, r − ‖A0F (x0)‖) then in Definition 2.7 a

function even tighter than w can be used, so, the results can be weakened
even further, since Ω∗

0 ⊆ Ω0, and x1 still depends on the initial data.
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Conclusion

We presented the convergence analysis of BTS in order to approximate a locally
unique solution of a nonlinear equation. Using a combination of w–regular con-
tinuous and w0–center–regular continuous conditions and our idea of restricted
convergence region, we provided a tighter semi-local convergence analysis than
before [5, 8, 9, 10, 11]. Special cases are also given in this study. It is worth
noticing that the new advantages are obtained under the same computational
effort as before, since in practice the computation of the old function w1 requires
the computation of new functions w0 and w as special cases.
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