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a b s t r a c t

Patient-specific mortality prediction models are an essential component of Clinical Decision Support
Systems developed for caregivers in Intensive Care Units (ICUs), that enable timely decisions towards
effective patient care and optimized ICU resource management. While high prediction accuracy is
a fundamental requirement for any mortality prediction application, being able to so with minimal
patient-specific data is a major plus point that can help in improving care delivery and cost
optimization. Most existing scoring techniques and prediction models utilize a multitude of lab tests
and patient events to predict mortality and also suffer from reduced performance when available
patient data is less. In this paper, a Genetic Algorithm based Wrapper Feature Selection technique is
proposed for determining most-optimal lab events that contribute predominantly to mortality, even
for large-scale patient cohorts. Using this, an Extreme Learning Machine (ELM) based neural network is
designed for predicting patient-specific ICU mortality. The proposed GA-ELM model was benchmarked
against four popular traditional mortality scores and also state-of-the-art machine learning models
for experimental validation. The GA-ELM model achieved promising results as it outperformed the
traditional scoring systems by 11%–29% and state-of-the-art models by up to 14%, in terms of AUROC.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decade, healthcare management systems have
evolved to provide active decision-making capabilities through
Clinical Decision Support Systems (CDSSs). Hospital systems con-
tinuously generate huge volumes of clinical data which when
effectively analyzed for diagnosis support, can improve produc-
tivity and clinical care delivery. Typically, patient data is available
from varied sources and is highly temporal. CDSSs help utilize
this heterogeneous data for supporting intelligent applications
like patient profiling and disease prediction. In critical care ap-
plications, the process of taking practical decisions on managing
the care of intensive care patients can thus help augment doctors’,
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by incorporating predictive data analysis on the large amounts of
data generated while monitoring these patients.

The most important aspect of a CDSS in the ICU is, undoubt-
edly, its ability to accurately predicting in advance the mortality
risk of a patient, so that doctors and other healthcare personnel
can be prepared to intervene in time, with the resources available
in ICU. Apart frommeasuring the severity of illness, mortality pre-
diction can also play a crucial role in the assessment of treatment
and critical care policies of a hospital. Hence, ICU mortality pre-
diction has remained a well-researched problem over the years,
a fact that is evidenced in the various severity scores developed
for the purpose and also the customized, country-specific variants
that are currently in use. In recent years, the application of data
mining and machine learning techniques have enabled further
enhancement in CDSS applications like ICU mortality prediction,
length-of-stay prediction, etc. Despite this, validation studies car-
ried out by various researchers [1,2] have shown that these scores
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can be further fine-tuned for better performance. Any such fine-
tuning can help in reducing the time taken in collecting patient
data, thus enabling earlier predictions with better accuracy than
that achieved by traditional scoring systems.

Parametric scoring based prediction models typically use the
perceived relevance of the clinical measurements of an ICU pa-
tient, to calculate a score in a particular range, as per a model
derived by clinical experts. A popular severity scoring model
called APACHE1 [3], along with its later variants [4–6], is a phys-
iological system that computes an ICU patient’s mortality score
using their clinical data. The SAPS2 [7] scoring system and its
subsequent versions [8,9] are also popular parametric scoring
systems that use measured biological and clinical variables to
predict the possibility of patient death in ICUs. Another scoring
based model, SOFA3 [10] tracks the extent of organ failures in
ICU patients and predicts mortality risk based on only six vari-
ables (Respiration, Central Nervous System, Cardiovascular, Renal,
Coagulation and Comorbidity). OASIS,4 a recent scoring system
proposed by Johnson et al. [11], uses a subset of APACHE-IV
variables along with others like age, length-of-stay and elective
surgery prior to ICU admission, to predict mortality of ICU pa-
tients. According to the authors, its performance is at par with
that of APACHE-IV and is considered superior to APACHE-IV as it
requires lesser features.

Non-parametric models incorporate soft computing
techniques such as data mining, Machine Learning (ML), bio-
inspired/evolutionary computing and other optimization tech-
niques. These models have been applied across domains and
have proven to be comparatively effective in solving various
problems. In the field of bioinformatics, techniques like Genetic
Algorithm [12,13] and memetic optimization [14] have been used
to address the problem of protein multiple sequence alignment.
Hybrid and modified versions of techniques like Particle Swarm
Optimization, Cat Swarm Optimization [15] and Gravitational
Search [16] have been applied successfully adapted for load
balancing and scheduling in cloud computing environments.

In the field of Healthcare, non-parametric techniques based
prediction models employ data mining and Machine Learning
(ML) techniques for predicting the risk of death in ICUs. Works
proposed by various authors [2,17–27] use various ML and data
mining techniques such as Artificial Neural Networks (ANN), Sup-
port Vector Machines (SVM), Decision Trees, Logistic Regression
and also Deep Learning techniques like RNN for predicting mor-
tality risk. These works have been compared with traditional
severity scores, mostly SAPS, SOFA and APACHE, and were found
to outperform them with respect to accuracy.

While most parametric scoring systems like APACHE-II, SAPS-
II and SOFA are now considered standard for ICU mortality mea-
surement in practice, the accuracy achieved by them is low in
comparison to non-parametric methods. Moreover, the patient-
specific data points considered as features by each scoring sys-
tem is different and often, significantly large in number, which
means that all such prescribed lab tests (lab events) have to
be performed for each ICU patient before a mortality risk can
be assessed. This contributes to an additional delay in making
time-critical mortality decisions, while also adversely affecting
cost and resource usage. It is therefore important to be able to
predict mortality risk using as minimal clinical variables or lab
events (features) as possible, at the earliest possible time, with
high precision and accuracy. To the best of our knowledge, such
an investigation focusing on the contribution of individual or

1 Acute Physiology And Chronic Health Evaluation (APACHE).
2 Simplified Acute Physiological Score (SAPS).
3 Sequential Organ Failure Assessment (SOFA).
4 Oxford Acute Severity of Illness Score (OASIS).

group of labevent related features in mortality risk prediction has
not been conducted on large-scale patient data, as a benchmark
study. This paper aims to address these gaps, and our significant
contributions are listed below.

1. Designing a Genetic Algorithm based Wrapper Feature Se-
lection technique with Extreme Learning Machine as es-
timator (GAWFS) for effectively capturing the representa-
tive lab events for mortality prediction, and benchmark-
ing its effectiveness against that of traditional feature se-
lection techniques — ANOVA F-test, Mutual Information
test, Recursive Feature Elimination & Sequential Feature
Selection.

2. Designing an Extreme Learning Machine (ELM) based neu-
ral network architecture for building an ICU mortality pre-
diction model trained on optimal representations of pa-
tients’ clinical data for improved prediction performance.

3. Benchmarking the proposed mortality prediction model
built on GAWFS and ELM against four popular traditional
ICU severity scoring models — SAPS-II, SOFA, APS-III &
OASIS, and state-of-the-art machine learning based models.

The rest of this paper is organized as follows: In Section 2,
the proposed feature selection technique and mortality prediction
model are described in detail. The experimental validation re-
sults and discussion of benchmarking experiments conducted for
comparison with traditional scoring models and state-of-the-art
machine learning approaches is presented in Section 3, followed
by conclusions and references.

2. Materials and methods

The processes defined as part of the proposed approach for
ICU mortality prediction based on a patient cohort’s clinical data
is depicted in Fig. 1. Each of these processes is discussed in further
detail in this section.

2.1. Patient cohort selection and data preprocessing

For benchmarking the proposed methodology, we used an
openly available standard dataset, MIMIC-III (v1.4) [28] for our
experiments. The dataset consists of deidentified hospital data
associated with multiple admissions of 46,520 distinct patients.
From this data, a patient cohort was selected based on the fol-
lowing criteria:

1. Clinical data of only adult patients (age>15) was selected
for the cohort, in accordance with previous studies. This is
important as the procedures used for pediatric patients are
highly specific in nature [2].

2. In cases where a patient was admitted to ICU multiple
times, only the first ICU admission of each patient was
considered for the study. This helps ensure the CDSS nature
of a mortality prediction model which helps in predicting
mortality risk with respect to earliest available data on a
patient’s condition.

Accordingly, a subset of 31,691 eligible patients was chosen
as the patient cohort. For these patients, the results of a total of
573 lab tests performed are available in a MIMIC-III table called
‘labevents’. These lab test values are extracted and modeled into
a representation, where each row represents a patient, and each
column represents a lab test. However, there are several missing
values in some rows, as not all tests are necessarily performed
on all patients. If the rows (patients) with such missing column
values are directly removed from the cohort, then a large number
of patients will need to be excluded from the cohort. To over-
come this, we separately calculated the median values of each
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Fig. 1. Workflow of the defined methodology.

Table 1
Number of expired/alive patients in initial and selected cohorts.
Cohort Alive Expired Total

MIMIC-III data 30,761 15,759 46,520
Selected Cohort 19,225 12,466 31,691

Fig. 2. Statistics relating to the age of patients in the selected cohort.

column for all alive and expired patients in the selected cohort
and filled these median values in place of any missing values
in that particular column. Along with these 573 features, other
demographic features like age and gender were also added to the
feature set. Additionally, the ICD9 [29] disease code of a patient’s
first diagnosis, length of stay and also the first_careunit (the type
of ICU to which the patient was first admitted to) of the patients
were also considered as features. After final preprocessing tasks
are applied, the patient cohort consisted of 31,691 patients (rows)
and the 578 features (columns) representing them. The outcome
labels are the ‘expire_flag’ of each patient (0 for alive and 1 for
expired).

The statistics of the selected cohort is tabulated in Table 1 and
Fig. 2 shows the frequency distribution of patient age (expired
and alive) in the selected cohort.

2.2. Optimally modeling lab events

Laboratory tests or events are one of the several pre- and
post-analytic mechanisms that help medical personnel in con-
tinuously monitoring a patient’s condition. Often, medical per-
sonnel is prone to order various lab evaluation procedures for
patients, some of which may be unnecessary in actual under-
standing of the patient’s condition. Eliminating such unnecessary
and wasteful lab evaluations are of significant importance, given
the rapidly escalating healthcare and insurance costs as well as
excessive overuse of laboratories and equipment in care deliv-
ery [30]. Moreover, the additional time spent performing such
unnecessary tests required by some scoring systems can delay
crucial new insights into the patient’s condition, thus affecting
timely intervention. For the problem of mortality prediction for
ICU patients, it is critical to predict mortality risk at the earliest
possible patient condition and hence, reducing the number of lab
events required to predicting mortality effectively, is a matter
of significant importance. In this paper, we attempt to model
patient-specific lab event requirements for the two-fold objec-
tive of reducing prediction time as well as improving prediction
accuracy.

To determine the optimal representation for each patient in
the chosen cohort, a Genetic Algorithm based Wrapper Feature
Selection (GAWFS) technique is proposed. GAWFS is used to find
the most-optimal subset of feature variables of a patient (i.e., lab
events) to predict mortality risk of ICU patients. This optimal
feature set is used for training a learning-based risk prediction
model. While feature selection techniques have been extensively
used for deriving the optimal feature set, feature extraction can
also be used to reduce dimensionality and increase the efficacy
of the model. However, feature extraction techniques use a sta-
tistical combination of feature values to generate new features
which makes it impossible to track which features (in our case
lab events) were contributed in the prediction. As the purpose of
our work is also to identify the most crucial lab events, we used
feature selection instead of feature extraction.

2.2.1. Feature selection
Feature selection (FS) is the ‘‘process of selecting an optimal

subset of relevant features for use in the construction of predic-
tion models" [31]. Essentially, FS methods can help in reducing
the dimensionality of the dataset by ignoring the unimportant or
noisy features so that the prediction process can be more accurate
and computationally efficient [32]. In this case, if a real-world
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Fig. 3. Genetic Algorithm based Wrapper Feature Selection process.

Algorithm 1 Optimal Lab Events Subset Selection using GAWFS
Input: Set of all lab events & patient-specific mortality labels
Output: Optimal lab events subset of, say, n features (Best
solution)
1: while iterations ≤ 100 do ▷ No.of generations=100
2: Generate randomly a feature set (lab events) for all pa-

tients ▷ Each feature subset represents
an individual chromosome, and 100 feature subsets of patients
represent the initial population

3: Select parents and perform genetic operations ▷ Single
point cross-over and mutation with probabilities of 0.5 and 0.2
respectively are used

4: Create new generation
5: Calculate fitness of new generation ▷ AUROC performance

of ELM
6: if new-fitness > old-fitness then ▷ New generation’s fitness

is better than that achieved with previous subset of features
7: Replace current generation with new generation
8: else
9: Retain the current generation

10: end if
11: end while

CDSS application can make accurate predictions based on a lower
number of features (e.g., lab event measurements), then it can
potentially save lives, time and cost, and consequently, is more
effective and valuable.

FS techniques can be mainly sub-categorized into filter and
wrapper methods. Filter methods are suitable for quick feature
selection based on the threshold of general characteristics of the
data, such as statistical dependencies, without using any induc-
tion or classification algorithm [32,33]. Some popular examples
are Analysis of Variance (ANOVA) F-test [34] and Mutual Infor-
mation (MI) test. Wrapper methods generate an optimal feature
subset by evaluating the quality of each feature subset, based
on some classification or induction algorithm, regardless of the
chosen learning method [35]. Recursive Feature Elimination (RFE)
and Sequential Feature Selection (SFS) are popular examples of
wrapper based methods. Although wrapper methods are com-
putationally more expensive in comparison to filter methods,
the quality of the derived feature subset is better ensured as
the performance evaluation with respect to a classifier model is
involved in the feature selection process.

In order to determine the reduced optimal set of features,
i.e., the reduced set of lab events contributing the most towards
mortality risk prediction, we propose a Genetic Algorithm based
Wrapper Feature Selection (GAWFS) technique. Genetic Algo-
rithm (GA) is an evolutionary meta-heuristic algorithm inspired

by the biological process of natural selection and the theme
of ‘‘survival of the fittest’’. GA is known to offer high-quality
solutions to optimization and search problems by using the op-
erations — Selection, Crossover and Mutation as in the process
of natural selection and hence, GA is appropriate for the feature
selection process for removing redundant lab events for improved
mortality prediction.

The GAWFS process is depicted in Fig. 3. We made use of
concepts of GA for calculation of fitness of a population (a set
of individuals and chromosomes, i.e., a subset of features or lab
events) and based on the fitness, a particular feature is selected
if it is fit. From the full feature set consisting of 578 features,
the initial population was selected as 100 random feature subsets
of lab events for all patients (each feature subset is analogous
to ‘individuals’ in the ‘population’). The feature subset and the
associated patient-specific mortality labels are fed into an estima-
tor/classifier, whose fitness in terms of classification performance
is then measured.

Algorithm 1 illustrates the process of deriving the optimized
lab event subset using GAWFS. We use an Extreme Learning
Machine (ELM) based neural network based architecture as a clas-
sifier or estimator model for the GA technique, thereby making
GAWFS a wrapper based feature selection technique. ELM is a
training method for a single hidden layer neural network based
classifier, for which only the weights between hidden and output
layer need to be learned. The ELM model is described in detail in
Section 2.3. As the fitness function, the metric Area Under the Re-
ceiver Operating Characteristic Curve (AUROC), as shown in Eq. (1),
was used in GAWFS for calculating the fitness value associated
with a particular feature subset. AUROC measures the overall
quality of a classifier by varying the threshold parameter (say
i), which biases the classes and returns a value between 0 and
1 (where a value of 1 indicates best classification performance
possible). The number of thresholds varied is determined by the
number of unique number of predicted probabilities of the ELM
classifier. As AUROC measures how well a classifier has learned
to classify between the majority and minority classes in the
presence of class imbalance, it is apt for our problem of mortality
prediction, and therefore, it was chosen as the fitness function in
GAWFS and is calculated as per Eq. (1).

Fitness, f (x) =

N−1∑
1

(TPRi+1 − TPRi)(FPRi+1 − FPRi) (1)

where FPR is the False Positive Rate, TPR is the True Positive
Rate and i refers to the varying threshold parameter for which
at each point FPR and TPR are determined and N is the number
of thresholds which was found to be 1062 in our experiment.
Eq. (1) sums all the area of all the small rectangles in the ROC
curve between two FPR and TPR points for adjacent thresholds.
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Single point crossover and mutation operations were per-
formed with empirically determined probabilities of 0.5 and 0.2
respectively. During this iteration, a new generation gets gener-
ated where, least fit individuals in the population are replaced,
provided their fitness is better compared to the ones in the pop-
ulation. In order to enable us to compare the proposed FS model
with other FS techniques, the GAWFS technique was configured
to select the most important 10 lab events or features.

2.3. Building the prediction model

The design of the proposed prediction model is driven by
the two principal requirements of a mortality prediction CDSS.
Firstly, eliminate false negative mortality predictions, i.e., a wrong
low mortality risk prediction for a patient who is actually at
high mortality risk should never occur, and, secondly, to ensure
learnability after deployment as a real-world CDSS. To address
these two major aspects, we propose an architecture built on an
Extreme Learning Machine (ELM) neural network, with Rectified
Linear Unit (ReLU) as the hidden layer activation function.

ELM is a learning technique for training Single hidden Layer
Feedforward Neural Networks (SLFNN) [36] that are trained on fi-
nite training sets. Initially, the hidden nodes in ELM are randomly
fired with random weights and learning is carried out with-
out iterative tuning. By design, only one parameter needs to be
learned in ELM, i.e., the set of weights between the hidden layer
and output layer. Thus ELMs are extremely fast when compared
to traditional SLFNNs and also very well-suited for further re-
training for future learning [37]. Moreover, ELMs can be trained to
converge to the smallest possible error with minimal magnitude
of weights, due to which the generalization performance of ELMs
far exceeds that of traditional feedforward neural networks (as
per Bartlett’s theory). Another advantage of ELM is its ability to
reach solutions in a straightforward manner avoiding problems
like local minima, overfitting and improper learning rate [37].
Based on these observations, we experimented with ELM as an
estimator in the proposed mortality prediction model, for ex-
ploiting its advantages for the development of real-world CDSSs.
After the FS process, the feature subset with the best fitness value
along with the class labels is used for training the ELM model, for
predicting patient-specific mortality risk.

Fig. 4 shows the ELM architecture used for training the pro-
posed model. It is primarily a SLFNN architecture, where, the
number of input nodes is governed by the number of features
used for training (as described in Section 2.2.1). The hidden
layer consists of 50 nodes and one node at the output layer,
which predicts the mortality risk. We experimented with several
variations in the number of nodes in the hidden layer, but it
was observed that the performance improvement was minimal
beyond 50 nodes, and moreover, this resulted in significant in-
crease in training time. Thus, we chose the optimal number of
nodes in the hidden layer as 50. We used ReLU as the hidden
layer activation function in the proposed ELM architecture. ReLU,
being a ramp function given by f (x) = max(0, x), can trigger
for any non-zero input and therefore, helps in predicting even
the slightest chance of mortality, thereby eliminating any false
negative predictions.

Algorithm 2 depicts the process of training the ELM network
as an estimator for the proposed feature selection model, which
also works as the final prediction model. The various feature sets
generated by the GAWFS technique and the final optimal feature
set obtained after the GAWFS process with the associated patient-
specific mortality labels are used for training the ELM model. The
parameters and weights are initialized randomly, and the output
matrix is calculated based on the given lab events or features set
and patient-specific mortality labels. During training, the weights
between the hidden and output layer are iteratively optimized
and finally, patient-specific mortality prediction performance is
observed.

Fig. 4. Architecture of the ELM Prediction Model.

Algorithm 2 Process of training ELM as an estimator for proposed
GAWFS and for the proposed prediction model
Input: A training set with N samples (from GAWFS) consisting
of lab event features and mortality labels (xi, yi)|xi, yiER, i =

1, 2, ...N Activation function f (x) (ReLU) Output: ICU
Mortality Prediction
1: Randomly assign weights wi and bias bi, i = 1, 2...N for N

training samples
2: Compute output matrix based on the input lab event feature

set, say H
3: Compute output weights based on input mortality labels and

output matrix β

4: Train the ELM network using the Least Square Solution β ′ to
the linear system Hβ = T

5: Analytically tune output weights
6: Perform prediction for test set and observe prediction

performance

3. Experimental evaluation and results

The proposed mortality prediction approach was evaluated
by a series of experiments, designed to benchmark it against
both traditional and state-of-the-art learning-based approaches.
The experimental evaluations were performed on an environment
which consisted of a high-end server running Ubuntu Server
OS with 56 cores of Intel Xeon processors, 128 GB RAM, 3 TB
Hard Drive and two NVIDIA Tesla M40 GPUs. For all experi-
ments involving training and testing, 10-fold cross-validation was
performed. The proposed GAWFS technique was configured to
select the 10 most important lab events that contributed towards
mortality prediction from the 578 lab events (raw features). For
the selected cohort of 31,691 patients, the lab events (features)
that were found to be of high importance were as per proposed
GAWFS technique – Platelet Count, Red Blood Cells, Hematocrit,
Sodium, Chloride, Bicarbonate, Base Excess, Urea Nitrogen, Anion
Gap, Partial Thromboplastin Time (PTT). These features, along with
the corresponding patient-specific mortality labels for the se-
lected cohort were then used for training and validation of the
designed prediction model.

3.1. Evaluation of the proposed feature selection model

This phase involved two experiments. The first experiment
was designed for observing the performance of the proposed
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Table 2
Comparison of ICU mortality prediction performance of the proposed
GAWFS+ELM model and other traditional feature selections techniques.

Metric ANOVA MI RFE SFS GAWFS+ELM

Accuracy 0.70 0.70 0.72 0.71 0.75
Precision 0.74 0.73 0.74 0.74 0.81
Recall 0.70 0.70 0.71 0.71 0.74
F-Score 0.71 0.71 0.72 0.72 0.76
AUROC 0.75 0.74 0.76 0.76 0.80

Table 3
Comparison of ICU mortality prediction performance comparison between ELM
with no feature selection and proposed model (GAWFS+ELM).

Metric ELM GAWFS+ELM

Accuracy 0.70 0.75
Precision 0.78 0.81
Recall 0.71 0.74
F-Score 0.74 0.76
AUROC 0.74 0.80

GAWFS+ELM model, against that of conventional filter and wrap-
per based methods. We selected two conventional filter FS meth-
ods (ANOVA F-test and Mutual Information (MI)) and two wrap-
per FS techniques (Recursive Feature Elimination (RFE) and Se-
quential Feature Selection (SFS)) and applied them to raw features
(578 in total) for deriving the respective optimal features sets.
The ELM is again used as an estimator/classifier model for each
FS method. Each FS technique was configured to select 10 im-
portant lab events and the respective feature sets generated by
each technique were used for training a base ELM model. The
performance of each of these models was compared against the
proposed GAWFS+ELM model. Standard metrics like accuracy,
precision, recall, F-score and AUROC were used for comparative
evaluation of performance. The validated results for the ELM
model trained with feature sets generated by GAWFS, ANOVA, MI,
RFE and SFS feature selection techniques are shown in Table 2.
Next, in the second experiment, we compared the GAWFS+ELM
model to measure its performance over that of pure ELM architec-
ture when trained with the initial feature set (578 raw features)
without using any FS technique. The results of this experiment
are tabulated in Table 3.

From Tables 2 and 3, it is clear that the feature selection using
the proposed GAWFS technique was most effective for prediction
and achieved the best performance with respect to all metrics
in contrast to other FS techniques as well as over the model
that used only raw features for prediction. Hence, we conclude
that the reduced feature set selected by the proposed GAWFS
technique is made up of the most relevant features or lab events
that contribute the most significant patient-specific information,
due to which a mortality prediction model trained on it can be ef-
fective in real-world scenarios too. More importantly, in the case
of a real-world CDSS application, a major advantage is foreseen
as only 10 features (lab tests/events) need to be measured for
each patient thus eliminating wasteful or insignificant lab tests.
This can result in a significant reduction in costs and unnecessary
hospital resource consumption, in addition to making predictions
comparatively faster, with better accuracy.

3.2. Benchmarking against traditional mortality scoring systems

Several traditional scoring methods are already in use in real-
world ICUs, which are primarily parametric mortality scores. To
evaluate the effectiveness of the proposed GAWFS+ELM model,
we benchmarked the performance of the proposed model against
that of four traditional scoring systems, SAPS-II (Simplified Acute

Table 4
Comparison of ICU mortality prediction performance of proposed GAWFS+ELM
model with traditional severity scores — SAPS-II, SOFA, OASIS and APS-III.

Metric GAWFS+ELM SAPS-II SOFA OASIS APS-III

Accuracy 0.75 0.65 0.63 0.62 0.62
Precision 0.81 0.66 0.62 0.67 0.67
Recall 0.74 0.65 0.63 0.62 0.61
F-Score 0.76 0.59 0.57 0.51 0.49
AUROC 0.80 0.72 0.62 0.64 0.67

Physiological Score), SOFA (Sequential Organ Failure Assessment),
APS-III (Acute Physiological Score) and OASIS (Oxford Acute Sever-
ity of Illness Score). For each patient in the selected cohort, we
implemented each traditional score using the lab event data from
the MIMIC dataset [38], and the prediction results were obtained.
For SAPS-II, the probability of mortality [2,8] for each patient was
calculated as per Eq. (1).

log(Pm/1−Pm) = −7.7631+0.0737∗S+0.09971∗ log(1+S) (2)

where Pm is the required mortality probability of a patient and S
is the SAPS-II score of the patient. The threshold of classification
for SAPS-II based mortality probability was taken as 0.5 as done
by Patil et al. [39].

In the case of SOFA, the mortality prediction of each patient
was obtained by regressing the mortality on the SOFA score using
a main-term logistic regression model as per Pirracchio et al. [2].
Similarly, for APACHE-III (APS III), the mortality probability for
each patient is calculated as per Eq. (2) [5], where, Pm is the
required mortality probability of a patient and APS is the APS-III
score of the patient.

log(Pm/1 − Pm) = −4.4360 + 0.04726 ∗ APS (3)

The probability of mortality for each patient as per the OA-
SIS scoring system is given by the in-hospital mortality score
calculation [11], given by Eq. (3).

log(Pm/1 − Pm) = −6.1746 + 0.1275 ∗ OASIS (4)

where Pm is the required mortality probability of a patient and
OASIS is the OASIS score of the patient. The threshold of classi-
fication for APS-III and OASIS based mortality probabilities were
also considered to be 0.5.

The results of this experiment are summarized in Table 4.
It can be observed that the proposed GAWFS+ELM model out-
performed all the traditional scoring systems considered for the
comparison — SAPS-II, SOFA, OASIS and APS-III, by 15%–20%
in terms of accuracy, while the observed AUROC improvement
was about 11%–29%. The superiority of the proposed prediction
models trained on a highly relevant feature set is evident from
the tabulated results in terms of all other metrics considered. A
plot of ROC curves for the proposed model and also the standard
scoring systems is shown in Fig. 5. It can be observed in the plot
that the area under Receiver Operating Characteristic (ROC) curve
for the proposed GAWFS+ELM model is significantly higher than
the standard scoring models.

3.3. Comparison with state-of-the-art machine learning models

Several non-parametric approaches to ICU Mortality predic-
tion have been proposed over the years. We conducted experi-
ments to benchmark the performance of the proposed
GAWFS+ELM model against the current state-of-the-art works in
this domain, like the models proposed by Calvert et al. [23,24]
and Grnarova et al. [25] in 2016, Harutyunyan et al. [26] in 2017
and Che et al. [27] (2018). These state-of-the-art ML based models
were developed and benchmarked on the MIMIC-III dataset. For
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Table 5
Comparison of ICU mortality prediction performance of proposed GAWFS+ELM model with state-of-the-art ML based models.

Study cohort Study’s accuracy GAWFS+ELM accuracy Study’s AUROC GAWFS+ELM AUROC

Calvert et al. [23] 0.80 0.90 0.88 0.90
Calvert et al. [24] 0.81 0.92 0.93 0.94
Grnarova et al. [25] –a 0.96 0.96 0.97
Harutyunyan et al. [26] –a 0.92 0.86 0.90
Che et al. [27] –a 0.98 0.84 0.96

aNote: The authors of this study reported only AUROC performance in their paper, due to which we are unable to provide prediction
accuracy comparison in Table 5.

Fig. 5. Observed AUROC performance of proposed GAWFS+ELM model against
various traditional severity scores.

each of these models, we re-generated the cohorts as depicted in
the respective models to the highest precision possible. Cohort
generation and comparison were carried out in a manner similar
to that of Johnson et al. [38]. The proposed GAWFS+ELM model
was then applied to the patient cohorts used by each of these
works. The metrics, prediction accuracy and AUROC were consid-
ered for experimental evaluation, and the results are tabulated in
Table 5.

It can be observed that the proposed GAWFS+ELM model
outperformed all the state-of-the-art models in terms of both
prediction accuracy and AUROC. It is to be noted that, some of the
state-of-the-art models [25–27] have not reported their model’s
prediction accuracy values, due to which we are unable to provide
these values in Table 5. Hence, we conclude that the proposed
model was effective in identifying the most optimal set of lab
events to be performed for each patient, to achieve cost, time
and performance improvements over the existing state-of-the-art
models.

3.4. Statistical significance testing of the proposed model

To further validate the proposed model’s improved perfor-
mance in comparison to both traditional scoring systems and
the state-of-the-art machine learning models, the GAWFS+ELM
model was subjected to statistical significance testing. Each
model under evaluation, including the proposed as well as the
state-of-the-art, was executed for a predefined number of rounds
(10 rounds), and a standard-size sample of each model’s results
during each round, with reference to all evaluation metrics used,
was collected. Interestingly, it was observed that the result sam-
ples were also normally distributed. Therefore, to check if there is

a statistically significant difference between the proposed model
and the models under comparison, we performed the Student’s
t-test [40].

The Student’s t-test is a statistical hypothesis testing tech-
nique that can be used when the samples taken for a normally
distributed dataset are small, and its standard deviation is not
known. To start with, a null hypothesis H0 was considered, which
indicates that there is no statistically significant difference be-
tween the result samples of the proposed and existing models.
The Student’s t-test was performed for proposed model against
each of the existing standard scoring systems, with a significance
level of 5% and it was found that the p-value was lesser than
0.04 for all the metrics. Due to this, the null hypothesis H0, was
rejected for all the cases, which means that there is a statistically
significant difference between the performance metrics of the
proposed model and that of the existing models. It is also to be
noted that the significance level is 5%, i.e., for 95% of the times, the
performance of the proposed model is significantly different from
that of the existing models. The results of the test of the proposed
model against traditional severity scoring models are tabulated in
Table 6 and that against state-of-the-art machine learning based
models in Table 7.

3.5. Discussion

Based on the results of the validation experiments, several
interesting observations can be made. Firstly, the proposed ap-
proach ensures that only a reduced set of features or lab events,
selected by the proposed GAWFS technique, need to be measured
for effectively predicting the mortality risk of a patient. For sup-
porting this claim, we consider the patient with SUBJECT_ID: 22
in the MIMIC III dataset. The patient has spent only a single day
in ICU, but the number of labevents measured amount to 80.
Although this includes several labevents pertaining to the con-
dition he or she is suffering from, the mortality risk estimation,
being one of the first event performed for a patient in ICU will
get delayed due to the wait time associated with other lab tests.
Most existing ML based CDSS systems require a large number of
features or labevents to be available to make predictions with
reasonable accuracy. However, in our proposed approach, only
the labevents selected by the GAWFS (10 in this case) need to be
measured and input to the CDSS for mortality prediction, while
still ensuring a good prediction performance (AUROC of 0.80).

Secondly, from Table 1, it is evident that the chosen patient
cohort exhibits significant class imbalance. Due to the availabil-
ity of lower number of samples with positive mortality labels
(expire_flag = 1), the F-score and AUROC metrics are of crucial
relevance as they actively measure the model’s precision in true
positive mortality prediction, i.e., patients at high mortality risk
actually, predicted correctly as having high mortality risk. The
high values of F-score and AUROC of the proposed model in com-
parison to that of traditional severity scores currently in popular
use (SAPS-II, SOFA, APS-III & OASIS), means that our model can
effectively capture latent relationships of features and lab events
to predict mortality even in case of class imbalance exhibited
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Table 6
Student’s t-test results for statistical significant difference measurement between metric samples of
proposed GAWFS+ELM model and traditional severity scores — SAPS-II, SOFA, OASIS and APS-III.
Metrics → Accuracy, Precision, Recall, F-score, AUROC

Method → SAPS-II SOFA OASIS APS-III

GAWFS +
ELM

P value <.00001 <.00001 <.00001 <.00001
Decision* Reject Reject Reject Reject
Significant diff Yes Yes Yes Yes

*Significance level = 0.05.

Table 7
Student’s t-test results for statistical significant difference measurement for accuracy and AUROC metrics of proposed GAWFS+ELM
model and different state-of-the-art ML based models.
Metrics → Accuracy, AUROC

Method → Calvert et al [23] Calvert et al [24] Che et al [27] Grnarova et al [25] Harut-yunyan et al [26]

GAWFS +
ELM

P value <.02 <.04 <.04 <.01 <.01
Decision* Reject Reject Reject Reject Reject
Significant diff Yes Yes Yes Yes Yes

*Significance level = 0.05.

by the data. Our model outperformed state-of-the-art machine
learning models [23–27] by a significant margin, thus underscor-
ing its superior performance in making precise predictions for
patients at higher mortality risk. Based on observed experimental
results (Tables 4 and 5) and the statistical significance test results
(Tables 6 and 7), it can be thus be conclusively stated that the
proposed mortality prediction model can be very effective as a
real-world CDSS, and can also help in effective decision towards
reduced lab events. Thus, it can contribute positively to patient
care and aid in making intelligent decisions in a more effective
and productive way. In summary, the experimental and statistical
significance test results highlight the suitability of the proposed
model for use in real-world ICU mortality prediction CDSSs due
to its ability to reduce lab events or features to be considered
for early mortality risk prediction. Also of significant importance,
is the efficacy of the ELM neural network architecture that en-
ables higher prediction accuracy while lowering medical resource
consumption footprint.

4. Conclusions

In this paper, a labevents based patient-specific ICU mortal-
ity prediction model was discussed, that is built on a Genetic
Algorithm based Wrapper Feature Selection (GAWFS) and an
optimized neural network architecture called Extreme Learning
Machines (ELM). The GAWFS feature selection model was used to
derive an optimal feature subset (i.e., a reduced set of lab events),
that contribute the most towards mortality prediction of a se-
lected patient cohort, ensuring that only these labevents be mea-
sured for prediction of mortality risk of a patient. An ELM based
prediction model was built on this optimal feature set for a cohort
of 31,691 patients selected from the standard MIMIC-III dataset.
Performance evaluation of the proposed prediction model against
models built on different feature selection techniques (ANOVA F-
test, MI, RFE and SFS), selecting 10 features or labevents from a
total of 578, revealed that this GAWFS+ELM model outperformed
all by a margin of 4%–5% improvement in terms of prediction
accuracy and 5%–8% improvement in terms of AUROC. When
evaluated against four popular traditional severity scoring meth-
ods, SAPS-II, SOFA, OASIS and APS-III, the proposed GAWFS+ELM
model showed a significant improvement of 15%–20% in terms
of prediction accuracy and 11%–29% in terms of AUROC. Further,
benchmarking against the state-of-the-art ML based mortality
prediction methods applied to MIMIC-III dataset also highlighted
the superior performance of the proposed GAWFS+ELM model,

with an AUROC improvement of up to 14% over the state-of-
the-art approach. Statistical significance testing was performed
on the proposed model with Student’s t-test, which confirmed
the underlying statistically significant difference between the
proposed and state-of-the-art models. As part of future work, we
intend to benchmark the proposed models against other popu-
lar parametric scoring methods such as APACHE-IV and SAPS-3.
We also intend to explore the applicability of other evolution-
ary algorithms and deep unsupervised feature learning methods
along with other DNN based architectures and observe their
performances. We also plan to validate the proposed model on
real-world hospital data, so that it can be deployed and put to
use in ICUs as an effective CDSS.
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