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Abstract. We study the local convergence of a Steffensen-King-type method to approximate a locally
unique solution of a nonlinear equation. Earlier studies such as [14, 15, 17] show convergence under
hypotheses on the third derivative or even higher. The convergence in this study is shown under hy-
potheses on the first derivative. Hence, the applicability of the method is expanded. Finally, numerical
examples are also provided in this study.

1 Introduction

In this study we are concerned with the problem of approximating a locally unique solution x∗ of
equation

F(x) = 0, (1.1)

where F : D ⊆ S → S is a nonlinear function, D is a convex subset of S and S is R or C. Newton-like
methods are used for finding solutions of (1.1). These methods are usually studied based on: semi-
local and local convergence. The semi-local convergence matter is, based on the information around
an initial point, to give conditions ensuring the convergence of the iterative procedure; while the local
one is, based on the information around a solution, to find estimates of the radii of convergence balls
[1]–[19].

We present the local convergence analysis of the Steffensen-King-type method defined [14] for
each n = 0,1,2, · · · by
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wn = xn + γF(xn),

yn = xn −
F(xn)

F [xn,wn]

xn+1 = yn −φ(
F(yn)

F(xn)
)

F(xn)−βF(yn)

F(xn)+(β−2)F(yn)

F(yn)

F [wn,yn]
, (1.2)

where x0 is an initial point, β,γ ∈ S, F [x,y] is a divided difference of order one for function F at the
points x,y satisfying

F [x,y] =
F(x)−F(y)

x− y
if x ̸= y

F [x,x] = F ′(x) for each x,y ∈ D,

if F is differentiable function and φ : S → S is a weight function. Method (1.2) is a useful alternative
to the method [17] defined for each n = 0,1,2, . . . by

wn = xn + γnF(xn),

yn = xn −
F(xn)

F [xn,wn]

xn+1 = yn −φ(
F(yn)

F(xn)
)

F(xn)−βF(yn)

F(xn)+(β−2)F(yn)

F(yn)

F [wn,yn]
, (1.3)

where γ0 ∈ S and for each n = 1,2, · · ·

N′
3(xn) = F [xn,yn−1]+F [xn,yn−1,wn−1](xn − yn−1)+F [xn,yn−1,wn−1,xn−1](xn − yn−1)(xn −wn−1),

F [x, t,z],F [x,y,z,w] are divided differences of order two and three, respectively and γn =− 1
N′

3(xn)
. The

convergence of the preceding methods has been shown under hypotheses on higher order derivatives
which limits the applicability of these methods. As a motivational example, let us define function f
on D = [−1

2 ,
5
2 ] by

f (x) =
{

x3 lnx2 + x5 − x4, x ̸= 0
0, x = 0

Choose x∗ = 1. We have that

f ′(x) = 3x2 lnx2 +5x4 −4x3 +2x2, f ′(1) = 3,

f ′′(x) = 6x lnx2 +20x3 −12x2 +10x

f ′′′(x) = 6lnx2 +60x2 −24x+22.

Then, obviously, function f ′′′ is unbounded on D. In the present paper we only use hypotheses on the
first Fréchet derivative. This way we expand the applicability of method (1.2) and method (1.3).

The rest of the paper is organized as follows. In Section 2 the local convergence analysis of method
(1.2) and method (1.3) is given. The numerical examples are presented in the concluding Section 3.

2 Local convergence analysis

This Section contains the local convergence analysis of method (1.2) and method (1.3). Let L0 >
0,L > 0,L1 > 0,L2 > 0,M0 > 0,M ≥ 1,β,γ ∈ S be parameters and φ : S → S be a given function. The
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study of the local convergence analysis of methods (1.2) and (1.3) requires the introduction of some
parameters and functions. Define parameters

L3 = L1 +L2(1+ |γ|M0),

L4 = (L0 +L1 +L2(1+ |γ|M))M,

r1 =
2

2L0 +L

and
N = min{ 1

L0
,

1
L3

}.

Define functions on the interval [0,N) by

g1(t) =
Lt

2(1−L0t)
,

g2(t) = g1(t)+
L4t

2(1−L0t)(1−L3t)
,

=
1

2(1−L0t)
[L+

L4

1−L3t
]t,

g(t) = (L1(1+ |γ|M)+L2g2(t))t,

g0(t) =
L0t
2

+ |β−2|Mg2(t),

h1(t) = g1(t)−1,

h2(t) = g2(t)−1,

h(t) = g(t)−1

and
h0(t) = g0(t)−1.

Notice that r1 is the zero of function h1 on the interval (0, 1
L0
). We also have h2(0) = h(0) = h0(0) =

−1 < 0 and h2(t) → +∞,h(t) → ∞,h0(t) → ∞ as t → N−. It follows from the Intermediate Value
Theorem that functions h2,h and h0 have zeros in the interval (0,N). Denote by r2,r and r0 the
smallest such zeros, respectively. Set

λ = min{r0,r1,r2,r}.

Define function on the interval [0,λ) by

g3(t) = [1+ |φ

(
Mg2(t)
(1− L0

2 t)

)
| M2(1+ |β|g2(t))
(1−g0(t))(1−g(t))

]g2(t)

and

h3(t) = g3(t)−1.

Then, we have that h3(0) = −1 < 0 and h3(t) → +∞ as t → λ−. Hence, function h3 has a smallest
zero denoted by r ∗ . It follows that for each t ∈ [0,r∗)
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0 ≤ g(t)< 1, (2.1)

0 ≤ g0(t)< 1, (2.2)

0 ≤ g1(t)< 1, (2.3)

0 ≤ g2(t)< 1. (2.4)

and
0 ≤ g3(t)< 1. (2.5)

We denote by U(v,ρ),Ū(v,ρ) stand for the open and closed balls in S, respectively, with center
v ∈ S and of radius ρ > 0. Using the preceding notation we can show the following local convergence
result for method (1.2).

THEOREM 2.1. Let F : D ⊆ S → S be a differentiable function. Suppose there exist a divided
difference of order one F [., .] : D×D → S, a continuous function φ : S → S, a point x∗ ∈ D, parameters
L0 > 0,L > 0,L1 > 0,L2 > 0,M0 > 0,M ≥ 1,β,γ ∈ S such that for each x, y ∈ D

F(x∗) = 0, F ′(x∗) ̸= 0, (2.6)

|F ′(x∗)−1(F ′(x)−F ′(x∗))| ≤ L0|x− x∗|, (2.7)

|F ′(x∗)−1(F ′(x)−F ′(y))| ≤ L|x− y|, (2.8)

|F ′(x∗)−1(F [x,y]−F ′(x∗))| ≤ L1|x− x∗|+L2|y− x∗|, (2.9)

|F ′(x)| ≤ M0, (2.10)

|F ′(x∗)−1F ′(x)| ≤ M, (2.11)

|φ(t)| ≤ |φ(|t|)| ≤ |φ(u)| for each t ∈ D,u ∈ [0,+∞) (2.12)

such that |t| ≤ u

and
Ū(x∗,(1+ |γ|M0)r∗)⊆ D, (2.13)

where the radius r∗ is defined above Theorem 2.1. Then, sequence {xn} generated for x0 ∈U(x∗,r∗)−
{x∗} by method (1.2) is well defined, remains in U(x∗,r∗) for each n = 0,1,2, · · · and converges to
x∗. Moreover, the following estimates hold

|wn − x∗| ≤ (1+ |γ|M0)|xn − x∗|, (2.14)

|yn − x∗| ≤ g2(|xn − x∗|)|xn − x∗|< |xn − x∗|< r∗, (2.15)

and
|xn+1 − x∗| ≤ g3(|xn − x∗|)|xn − x∗|< |xn − x∗|, (2.16)

where the ”g” functions are defined above Theorem 2.1. Furthermore, for R ∈ [r∗, 2
L0
) the limit point

x∗ is the only solution of equation F(x) = 0 in Ū(x∗,R)∩D.
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Proof. We use mathematical induction to show estimates (2.14)–(2.16). First, to show (2.14) notice
that by hypothesis x0 ∈U(x∗,r∗)−{x∗} and we can write

w0 − x∗ = x0 − x∗+ γ(F(x0)−F(x∗))

= x0 − x∗+ γ
∫ 1

0
F ′(x∗+θ(x0 − x∗))(x0 − x∗)dθ (2.17)

and |x∗+θ(x0 − x∗)− x∗|= θ|x0 − x∗|< r∗ for each θ ∈ [0,1]. Then, using (2.10), (2.13) and (2.17),
we get that

|w0 − x∗| ≤ |x0 − x∗+ γ
∫ 1

0
F ′(x∗+θ(x0 − x∗))(x0 − x∗)dθ|

≤ |x0 − x∗|+ |γ||
∫ 1

0
F ′(x∗+θ(x0 − x∗))dθ||x0 − x∗|

= (1+ |γ|M0)|x0 − x∗|,

which shows (2.14) and w0 ∈ Ū(x∗,(1+ |γ|M0)r)⊆ D. Next, we shall show that F ′(x0) and F [x0,w0]
are invertible. Using (2.7), we get that

|F ′(x∗)−1(F ′(x0)−F ′(x∗))| ≤ L0|x0 − x∗|< L0r∗ < 1. (2.18)

It follows from (2.18) and the Banach Lemma on invertible functions [5, 7, 16, 19] that F ′(x0) is
invertible and and

|F ′(x0)
−1F ′(x∗)| ≤ 1

1−L0|x0 − x∗|
. (2.19)

By (2.9) and (2.14) (for n = 0) we obtain that

|F ′(x∗)−1(F [x0,w0]−F ′(x∗))|
≤ L1|x0 − x∗|+L2|w0 − x∗|
≤ L1|x0 − x∗|+L2(1+ |γ|M0)|x0 − x∗|
≤ L3|x0 − x∗|< L3r∗ < 1. (2.20)

So F [x0,w0] is invertible and

|F [x0,w0]
−1F ′(x∗)| ≤ 1

1−L3|x0 − x∗|
. (2.21)

Hence, y0 is well defined by the second sub-step of method (1.2) for n = 0. We can write

y0 − x∗ = [x0 − x∗− F(x0)

F ′(x0)
]+ [

F(x0)

F ′(x0)
− F(x0)

F [x0,w0]

= F ′(x0)
−1F ′(x∗)

∫ 1

0
F ′(x∗)−1

×[F(x∗+θ(x0 − x∗))−F ′(x0)](x0 − x∗)dθ]

+
F ′(x∗)−1((F [x0,w0]−F ′(x∗))+(F ′(x∗)−F ′(x0)))F ′(x∗)−1F(x0)

F ′(x∗)−1F ′(x0)F ′(x∗)−1F [x0,w0]
.

(2.22)
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Then, using (2.4), (2.8), (2.9), (2.11), (2.19), (2.21), (2.22) and the triangle inequality, we get in turn
that

|y0 − x∗| ≤ L|x0 − x∗|2

2(1−L0|x0 − x∗|)
+|F ′(x0)

−1F(x∗)||F [x0,w0]
−1F(x∗)|

×(|F ′(x∗)−1(F [x0,w0]−F ′(x∗))|+ |F ′(x∗)−1(F ′(x0)−F ′(x∗))|)

≤ g1(|x0 − x∗|)|x0 − x∗|+ (L1|x0 − x∗|+L2|w0 − x∗|+L0|x0 − x∗|)M|x0 − x∗|
(1−L0|x0 − x∗|)(1−L3|x0 − x∗|)

≤ g1(|x0 − x∗|)|x0 − x∗|+ (L1 +L2(1+ |γ|M0)+L0)M|x0 − x∗|2

(1−L0|x0 − x∗|)(1−L3|x0 − x∗|)

= g1(|x0 − x∗|)|x0 − x∗|+ L4|x0 − x∗|2

(1−L0|x0 − x∗|)(1−L3|x0 − x∗|)
= g2(|x0 − x∗|)|x0 − x∗|< |x0 − x∗|< r∗,

which shows (2.15) for n = 0 and y0 ∈ U(x∗,r∗). We shall show that F [w0,y0] and F(x0) + (β−
2)F(y0) are invertible. Using (2.9), (2.14) (for n = 0) and (2.1) we get that

|F ′(x∗)−1((F [w0,y0]−F ′(x∗))|
≤ L1|w0 − x∗|+L2|y0 − x∗|
≤ L1(1+ |γ|M0)|x0 − x∗|+L2g2(|x0 − x∗|)|x0 − x∗|
= g(|x0 − x∗|)< g(r∗)< 1. (2.23)

It follows from (2.23) that F [w0,y0] is invertible and

|F [w0,y0]
−1F ′(x∗)| ≤ 1

1−g(|x0 − x∗|)
. (2.24)

Using (2.2), (2.6), (2.7), (2.15)(for n = 0), (2.11), x0 ̸= x∗ we get in turn that

|(F ′(x∗)(x0 − x∗))−1[F(x0)−F(x∗)+(β−2)F(y0)−F ′(x∗)(x0 − x∗)]|

≤ |x0 − x∗|−1[|
∫ 1

0
F ′(x∗)−1(F ′(x∗+θ(x0 − x∗))−F ′(x∗))dθ||x0 − x∗|

+|β−2||
∫ 1

0
F ′(x∗)−1F ′(x∗+θ(y0 − x∗)dθ||y0 − x∗|

≤ |x0 − x∗|−1[
L0|x0 − x∗|2

2
+ |β−2|Mg2(|x0 − x∗|)|x0 − x∗|]

= g0(|x0 − x∗|)< g0(r∗)< 1. (2.25)

It follows from (2.25) that F(x0)+(β−2)F(y0) is invertible and

|(F(x0)+(β−2)F(y0))
−1F ′(x∗)| ≤ 1

|x0 − x∗|(1−g0(|x0 − x∗|))
. (2.26)

Using (2.26) in particular for β = 2, we get that

|F ′(x0)
−1F ′(x∗)| ≤ 1

|x0 − x∗|(1− L0|x0−x∗|
2 )

. (2.27)
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Then, by (2.12), (2.11), (2.15) (for n = 0,) and (2.17) we obtain that

|φ(F(y0)

F(x0)
)| = |φ(F ′(x∗)−1F(y0)

F ′(x∗)−1F(x0)
)|

≤ |φ(|F
′(x∗)−1F(y0)

F ′(x∗)−1F(x0)
|)|

≤ |φ( M|y0 − x∗|
|x0 − x∗|(1− L0|x0−x∗|

2 )
)|

≤ |φ(Mg2(|x0 − x∗|)
(1− L0|x0−x∗|

2 )
)|. (2.28)

It follows that x1 is well defined by the third sub-step of method (1.2) for n = 0. Then,using (2.5),
(2.11), (2.15) (for n= 0), (2.24), (2.26), (2.28) the third step of method (1.2) for n= 0, and the identity

x1 − x∗ = y0 − x∗−φ(
F(y0)

F(x0)
)

× [F ′(x∗)−1(F(x0)−F(x∗))−βF ′(x∗)−1(F(y0)−F(x∗))]F ′(x∗)−1F(y0)

F ′(x∗)−1(F(x0)+(β−2)F(y0))F ′(x∗)−1F [w0,y0]
,

we get that

|x1 − x∗| ≤ |y0 − x∗|+ |(F ′(x0)+(β−2)F(y0))
−1F ′(x∗)|

×|F [w0,y0]
−1F ′(x∗)||φ(F(y0)

F(x0)
)|

×[|F ′(x∗)−1(F(x0)−F(x∗))|+ |β−2||F ′(x∗)−1(F(y0)−F(x∗))|)M|y0 − x∗|]

≤ g2(|x0 − x∗|)|x0 − x∗|+ |φ

(
Mg2(|x0 − x∗|)
(1− L0|x0−x∗|

2 )

)
|

× (M|x0 − x∗|+ |β|M|y0 − x∗|)M|y0 − x∗|
|x0 − x∗|(1−g0(|x0 − x∗|)(1−g(|x0 − x∗|))

≤ [1+ |φ

(
Mg2(|x0 − x∗|)
(1− L0|x0−x∗|

2 )

)
|

× M2(1+ |β|g2(|x0 − x∗|))
(1−g0(|x0 − x∗|)(1−g(|x0 − x∗|))

g2(|x0 − x∗|)|x0 − x∗|

= g3(|x0 − x∗|)|x0 − x∗|< |x0 − x∗|< r∗,

which shows (2.16) for n = 0 and x1 ∈U(x∗,r∗). If we simply replace x0,w0,y0,x1 by xk,wk,yk,xk+1
in the preceding estimates we obtain (2.14)– (2.16) which complete the induction for these estimates.
Then, from the estimate |xk+1−x∗|< |xk −x∗|< r∗, we deduce that xk+1 ∈U(x∗,r∗) and limk→∞ xk =
x∗. Finally, to show the uniqueness part, let y∗ ∈ Ū(x∗,T ) with F(y∗) = 0. Set A =

∫ 1
0 F ′(y∗+θ(x∗−

y∗)dθ. Then, we get by (2.7) that

|F ′(x∗)−1(A−F ′(x∗))| ≤
∫ 1

0
L0|y∗+θ(x∗− y∗)− x∗|dθ

≤
∫ 1

0
(1−θ)|x∗− y∗|dθ ≤ L0

2
T < 1. (2.29)
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Then, it follows from (2.29) that A is invertible and from the identity 0 = F(x∗)−F(y∗) = A(x∗−y∗),
we deduce that x∗ = y∗.

�
Similar results can be obtained for method (1.3) as follows: Suppose that there exist divided dif-

ference of order two F [x,y,z] on D × D × D and divided difference of order three F [x,y,z,w] on
D×D×D×D and parameters α1 > 0,α2 > 0 such that for all x,y,z,w ∈ D

|F ′(x∗)−1F [x,y,z]| ≤ α1 (2.30)

and
|F ′(x∗)−1F [x,y,z,w]| ≤ α2. (2.31)

Define

r̄ =
−(L1 +L2 +2α1)+

√
(L1 +L2 +2α1)2 +16α2

8α2
.

Then, r̄ is the only positive solution of quadratic equation

4α2t2 +(L1 +L2 +2α1)t −1 = 0.

r∗ < r̄ (2.32)

and set
γ = max{|γ0|,

1
|F ′(x∗)|[1− (L1 +L2 +2α1 +4α2r∗)r∗]

} (2.33)

Moreover, suppose that sequence {xn} generated by method (1.3) for x0 ∈ U(x∗,r∗)−{x∗} is well
defined and remains in U(x∗,r∗). Then, using (2.9) and (2.30)–(2.32), we get that

|F ′(x∗)−1(N′
3(xk)−F ′(x∗))|

≤ |F ′(x∗)−1(F [xk,yk−1]−F ′(x∗))|
+|F ′(x∗)−1F [xk,yk−1,wk−1]||xk − yk−1|
+|F ′(x∗)−1F [xk,yk−1,wk−1,xk−1]||xk − yk−1||xk −wk−1|

≤ L1|xk − x∗|+L2|yk−1 − x∗|+α1(|xk − x∗|+ |yk−1 − x∗|)
+α2(|xk − x∗|+ |yk−1 − x∗|)(|xk − x∗|+ |wk−1 − x∗|)

< (L1 +L2)r∗+2α1r∗+4α2(r∗)2

< (L1 +L2 +2α1)r̄+4α2r̄2 = 1. (2.34)

It follows from (2.33) that N3(xk) is invertible and

|γk|= |N3(xk)
−1| ≤ 1

1− (L1 +L2 +2α1 +4α2r∗)r∗
≤ γ. (2.35)

Hence, we arrive at the following local convergence result for method (1.3).

THEOREM 2.2. Let F : D ⊆ S → S be a differentiable function. Suppose that the hypotheses of
Theorem 2.1 and (2.30)–(2.32) hold with γ defined by (2.33). Then, sequence {xn} generated for
x0 ∈U(x∗,r∗)−{x∗} by method (1.3) is well defined, remains in U(x∗,r∗) for each n = 0,1,2, · · · and
converges to x∗. Moreover, the following estimates hold

|wn − x∗| ≤ (1+ |γ|M0)|xn − x∗|,
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|yn − x∗| ≤ g2(|xn − x∗|)|xn − x∗|< |xn − x∗|< r∗,

and
|xn+1 − x∗| ≤ g3(|xn − x∗|)|xn − x∗|< |xn − x∗|.

Furthermore, for R ∈ [r∗, 2
L0
) the limit point x∗ is the only solution of equation F(x) = 0 in Ū(x∗,R)∩

D.

REMARK 2.3. 1. In view of (2.7) and the estimate

∥F ′(x∗)−1F ′(x)∥ = ∥F ′(x∗)−1(F ′(x)−F ′(x∗))+ I∥
≤ 1+∥F ′(x∗)−1(F ′(x)−F ′(x∗))∥ ≤ 1+L0∥x− x∗∥

condition (2.11) can be dropped and M can be replaced by

M(t) = 1+L0t

or by M(t) = M = 2 since t ∈ [0, 1
L0
).

2. The results obtained here can be used for operators F satisfying autonomous differential equations
[5] of the form

F ′(x) = P(F(x))

where P is a continuous operator. Then, since F ′(x∗) = P(F(x∗)) = P(0), we can apply the results
without actually knowing x∗. For example, let F(x) = ex −1. Then, we can choose: P(x) = x+1.

3. The radius r1 was shown by us to be the convergence radius of Newton’s method [5, 7]

xn+1 = xn −F ′(xn)
−1F(xn) for each n = 0,1,2, · · · (2.36)

under the conditions (2.6)–(2.8). The convergence radius r∗ of the method (1.2) cannot be larger
than the convergence radius r1 of the second order Newton’s method (2.36). As already noted in
[5, 7] r1 is at least as large as the convergence ball given by Rheinboldt [18]

rR =
2

3L
. (2.37)

In particular, for L0 < L we have that
rR < r

and
rR

r1
→ 1

3
as

L0

L
→ 0.

That is our convergence ball r is at most three times larger than Rheinboldt’s. The same value for
rR was given by Traub [19].

4. It is worth noticing that method (1.2) is not changing when we use the conditions of Theorem 2.1
instead of the stronger conditions used in [14, 15, 17]. Moreover, we can compute the computa-
tional order of convergence (COC) defined by

ξ = ln
(
|xn+1 − x∗|
|xn − x∗|

)
/ ln
(

|xn − x∗|
|xn−1 − x∗|

)
or the approximate computational order of convergence

ξ1 = ln
(
|xn+1 − xn|
|xn − xn−1|

)
/ ln
(

|xn − xn−1|
|xn−1 − xn−2|

)
.

This way we obtain in practice the order of convergence in a way that avoids the bounds involving
estimates using estimates higher than the first Fréchet derivative of operator F.
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3 Numerical Examples

We present numerical examples in this section. All the three examples we have taken φ(t) = 1 and
γ = 1.

EXAMPLE 3.1. Returning back to the motivational example at the introduction of this study, we
have L0 = L = 146.6629073, M = 2, M0 =

M
F ′(x∗) , L1 = L2 =

L0
2 , β = 2.5. Then the parameters are

r1 = 0.0045, r2 = 0.0012 = λ, r = 0.0023, r0 = 0.0188, r∗ = 0.0013.

EXAMPLE 3.2. Let D = [−1,1]. Define function f of D by

f (x) = ex −1. (3.1)

Using (3.1) and x∗ = 0, we get that L0 = e−1 < L = e, M = 2, M0 =
M

F ′(x∗) , L1 = L2 =
L0
2 , β = 2.5.

Then the parameters are

r1 = 0.3249, r2 = 0.0936, r = 0.1758, r0 = 0.0865 = λ, r∗ = 0.0971.

EXAMPLE 3.3. Let D = (−∞,+∞). Define function f of D by

f (x) = sin(x). (3.2)

Then we have for x∗ = 0 that L0 = L = 1,M = 1, M0 = M
F ′(x∗) , L1 = L2 = L0

2 , β = 2.5. Then the
parameters are

r1 = 0.6667, r2 = 0.2755 = λ, r = 0.4186, r0 = 0.2774, r∗ = 0.2992.
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[15] Á.A. Magreñán, Estudio de la dinámica del método de Newton amortiguado (PhD Thesis), Servicio de Publicaciones,
Universidad de La Rioja, 2013. http://dialnet.unirioja.es/servlet/tesis?codigo=38821

[16] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic press, New
York, 1970.
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