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A time-dependent switching anisotropic diffusion model for denoising and deblurring images
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A conditionally anisotropic diffusion based deblurring and denoising filter is introduced in this paper. This is
a time-dependent curvature based model and the steady state can be attained at a faster rate, using the explicit
time-marching scheme. The filter switches between isotropic and anisotropic diffusion depending on the local
image features. The switching of the filter is controlled by a binary function, which returns either zero or one,
based on the underlying local image gradient features. The parameters in the proposed filter can be fine-tuned to
get the desired output image. The filter is applied to various kinds of input test images and the response is
analyzed. The filter is found to be effective in the reconstruction of partially textured, textured, constant-intensity
and color images, as is evident from the results provided.

Keywords: image restoration and enhancement; isotropic/anisotropic switching filter; explicit time-marching

1. Introduction

Image enhancement plays a major role in the present-

day image-processing world. It is widely known that

images deteriorate during transmission and acquisi-

tion [1]. The deterioration of images is generally due to

two different phenomena [1]. The first one relates to

image acquisition and is mainly due to imaging system

artifacts, the best example of which is out-of-focus blur

or optical blur, caused by the deviation of an imaging

plane from the focus of an optical lens. This phenom-

enon is rather deterministic in nature. The second one

is due to the noise added to the signals and this is

rather stochastic in nature. Knowledge about the noise

is limited to the probability distribution. Having said

that, the noise is random, and if one analyzes it

properly, it can easily be observed that the noise can

also be data-dependent. However, in most of the

imaging modalities, the noise can be modeled as

random and independent of the data. Further, in

many practical scenarios, the noise is assumed to

follow a Gaussian distribution with mean zero and

variance �2 (Gaussian white noise).
Many methods have been proposed in the recent

literature for deblurring and denoising of images [2, 3].

Joshi et al. [3] make use of a statistical model based on

a Bayesian framework to estimate the noise features.

With the help of the estimated noise features, they

denoise the images. The color priors (with a two-color

model) are used for deblurring the images in this

method. Yuan et al. [2] proposed a method which finds

the deconvolution kernel based on the blur and noisy

image pairs, using which they determined the residual

image (from the image pairs) and deblurred

the images with the information obtained from the

residual image. However, this method fails to denoise

the images effectively. Even though all these methods

provide satisfactory results, in some cases they do not

guarantee unique and stable solutions. In most prac-

tical applications the deblurring and denoising prob-

lems are ill-posed in nature, and hence the uniqueness

and stability characteristics of the solutions play a vital

role in effective reconstructions.
Partial differential equations (PDEs) and varia-

tional methods are widely used for image denoising

and deblurring [4–8]. In PDE based methods, the

image is evolved with respect to time. The evolution

eventually results in a simplification or enhancement of

the image features. The variational based methods try

to find a minimum of the corresponding energy

functional and regularize the fidelity and smoothing

terms in the functional, using a regularization param-

eter [5]. Regularized solutions were also provided for

some of the PDE based image simplification and

enhancement methods [7, 9]. Peter van Beek et al. [10]

proposed a regularization method based on the

non-local means (NLM) [11] filter. In this work the

authors combine the NLM filter with the deblurring

term to reconstruct the images. PDE and variational

methods are quite well known for handling ill-posed

problems like deblurring and denoising, because the
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uniqueness and the stability of the solution can be
derived effectively. Further, the PDE formulation is
genuinely continuous. Thus, their approximations aim
to be independent of the underlying grid and often
reveal good rotational invariance.

The commonly used regularization functionals are
Tikhonov based [12] and total variation (TV) based [5].
The Tikhonov based functional uses the L2 norm
which penalizes on the image edges. In other-words, L2

norms do not encourage discontinuities in the solution.
Therefore, Tikhonov based methods are not widely
used in image processing. The TV based approaches
use a TV norm, which allows discontinuities in the
solution, and thus helps in retaining the edges in the
image, while denoising them. However, the evolution
of the PDE associated with the TV regularization
functional converges slowly and the convergence
heavily depends on the time-step parameter. This
drawback of TV was addressed to a considerable
extent by Marquiana and Osher [13].

Besides the slow convergence, another major short-
coming of TV based regularization methods is the
stair-case effect. TV based techniques approximate the
homogeneous areas in the image with constant-
intensity patches that cause a visual discrepancy
called the stair-case effect. Many methods were
proposed subsequently in the literature to address the
stair-case effect. The majority of these methods rely on
the energy functionals with higher-order evolution
PDEs [7,8]. However, the higher-order PDEs when
used in the evolution equations may result in a
smoothed output image (with blurred edges).
Another improved method was proposed by Suhua
et al. [14] and Chaan et al. [15], in which the authors
proposed a regularization functional, which is a convex
combination of TV norm and L2 norm, together with a
parameter to select the contribution of each of these
norms. This method could address the issue due to the
stair-case effect to a considerable extent, by providing
a better approximation of the homogeneous areas in
the images. However, this method also has a slow
convergence rate and the stability of the solution
depends sensitively on the time-step parameter of the
evolution PDE. Another noticeable issue with TV
based and Tikhonov based methods is that even
though the energy functional is convex, the
Euler–Lagrange equations associated with the energy
functional are nonlinear and are generally
ill-conditioned.

Many implicit and semi-implicit iterative solutions
were proposed in the literature for solving this
nonlinear PDE, see [16] and [17]. The implicit solution
proposed by Chan et al. [16] uses a primal-dual
quadratic method, and the linear semi-implicit
method proposed by Vogal and Omen [17] uses

a fixed-point iteration method. These methods provide
impressive results when used for denoising, but they
hardly perform well when used for deblurring and
denoising problems. In such cases these methods are
highly ill-conditioned and the computational cost is
extremely high.

The overheads due to the computational complex-
ity of the TV based methods were addressed by Osher
et al. [13], who proposed a model based on the level-set
motion and established that the steady state can be
reached quickly by the explicit time-marching method.
In this model the diffusion term is the mean curvature
motion (MCM). The MCM is a purely anisotropic
diffusion method, in which the level-lines move with a
speed proportional to their mean curvature in the
direction normal to the level-curves. Hence, the diffu-
sion takes place along the direction of the level-lines,
not across it. This property of the filter is desirable in
the regions of the images dominated by edges, finer
details and textures, whereas it is rather a liability in
the smooth or homogeneous areas. In the homoge-
neous areas the anisotropic diffusion pretends to form
constant-intensity patches resulting in the stair-case
effect [8].

All these facts (mentioned above) motivated us to
propose a time-dependent curvature based image
reconstruction method whose steady state is attained
quickly by the explicit time-marching method. The
proposed filter denoises anisotropically in the areas
dominated by the edges and isotropically on the
homogeneous areas. The switching of this filter
between anisotropic and isotropic behaviors is based
on the local image gradient features. The isotropic
diffusion on the homogeneous areas approximates the
filter to a ‘‘Laplacian’’ filter. One can easily observe
that the energy functional associated with the
‘‘Laplacian’’ is induced by an L2 norm. In other
words, for the energy functional which induces the L2

norm, the Euler–Lagrange equation will be a
‘‘Laplacian’’ operator. As we have already mentioned,
the L2 norm penalizes on the image edges, but rarely
leads to the formation of constant patches which
results in the stair-case effect. However, in the areas in
the image dominated by the edges and finer details
(like textures), the diffusion process will get trans-
formed into an anisotropic process and does not
diffuse at all in the direction of the gradient, making
the edges intact even after many iterations. The
experimental results provided show the capability of
the method to reduce the stair-case effect while
deblurring and denoising the images.

This paper is organized into five sections. Section 2
explains the background of the regularization methods
for image reconstruction. The proposed model and the
numerical implementations are described in Section 3.
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Section 4 gives a detailed explanation and inferences
regarding the results and the experiments conducted.
Finally we summarize our conclusions in Section 5.

2. An overview of regularization approaches for

image enhancement

An image reconstruction problem can be
formulated as:

Kuþ n ¼ u0, ð1Þ

where u0 is the observed image, u is the actual image,
K : R2! R2 is a linear bounded operator defined in R2

(real two-dimensional space) and n is the noise. Here
we assume the noise to be Gaussian white noise with
mean zero and variance �2 and further, the noise is
assumed to be independent of the data. Here K is a
blurring operator, which is typically a Fredholm
integral operator of the first kind [18] and is assumed
to be known. This operator can be written as:

ðKuÞðxÞ ¼

ð
�

kðx, x0Þuðx0Þdx0, x 2 �, ð2Þ

where k is defined as:

kðx, yÞ ¼
1

4��
e�ðx

2þy2Þ=4�: ð3Þ

Here � is the spread of the Gaussian kernel and � is
the area of support of the image. If we impose
translational invariance on the kernel k in (3), then it
becomes a point spread function (PSF). Therefore,
Ku can be written as k*u, where ‘‘*’’ denotes a linear
convolution operator. Now, the problem is to deter-
mine the original image u from the observed blurred
and noisy image u0. The above problem belongs to a
class of inverse problems, wherein we have to provide a
solution to the actual data from the observed data,
with some given prior information. In most practical
applications the inverse problems will be ill-posed, in
the sense of Hadamard [19].

A better way to deal with such ill-posed problems is
to consider a variational formulation of the model (1).
The main objective is to estimate u from the statistics
of the noise, blur and a priori knowledge of the image
features, like the smoothness of the image and the
existence of edges. Let us assume a functional J(u),
which measures the quality of the image u, i.e. a
smaller value of J(u) represents a better image. One can
note that, under the above assumption, the problem
can be solved as a constrained minimization problem:

min JðuÞ

u
ð4Þ

subject to kk � u� u0k
2
L2 ¼ j�j�

2,

since

kk � u� u0k
2
L2 ¼

ð
�

ðk � u� u0Þ
2 dx

� E

ð
�

n2 dx

� �
¼ j�j�2;

where E(x) stands for the expectation of the random
variable x and k is defined as in (3). Here � denotes the
image domain and �2 is the noise variance.

2.1. Regularization methods

Fourier transform based regularization filters
(FFT-REG filter) were used earlier, for deblurring
and denoising the images [20], and can be written as:

ûðwÞ ¼
û0ðwÞk̂ðwÞ

kk̂ðwÞk2 þ �
, ð5Þ

where x̂ denotes the Fourier transform of the func-
tion x, � is a positive regularization parameter, k � k
denotes the usual Euclidean norm and w denotes a
frequency variable. The solution is obtained in the
frequency domain. The other symbols in (5) are as
in (1). One can observe that the space in which the
solution is well-defined is the space of bounded
variation (BV space). The BV space allows disconti-
nuities in the function, hence the image gets deblurred
but hardly gets denoised. Therefore, the obvious
alternative is to use the Sobolev regularization filter
(SOB-REG-Filter) [20], which is defined in a space that
does not allow discontinuities in the function. The
Sobolev filter can be written as:

ûðwÞ ¼
û0ðwÞk̂ðwÞ

kk̂ðwÞk2 þ �SðwÞ
, ð6Þ

where the notation has the same meaning as in (5), and
the term SðwÞ ¼ kwk2 is the Fourier transform of the
‘‘Laplacian’’ of the image function u. This filter
denoises the image well but penalizes more on the
edge features. Therefore, the filters in (5) and (6) do not
provide satisfactory reconstruction results.

Another widely used regularization is Tikhonov
regularization [12] or the penalized least squares
method, which uses the regularization functional
JðuÞ ¼ jrujL2 ; thus the restoration problem can be
written as:

min

ð
�

jrujL2 dx

subject to
1

2

ð
�

ðk�u�u0Þ
2 dx�j�j�2

� �
¼ 0:

ð7Þ

Here j � jL2 denotes the L2 norm. The ‘‘Lagrangian’’
of (7) is written as:ð

�

jruj2 dxþ
�

2

ð
�

ðk � u� u0Þ
2 dx� j�j�2

� �
: ð8Þ
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The problem can be reduced to an energy functional

minimization problem:

JðuÞ ¼
�

2

ð
�

ðk � u� u0Þ
2 dx� j�j�2

� �
þ

ð
�

jruj2 dx,

ð9Þ

where � is the regularization parameter

(Lagrange multiplier) and ru is the gradient of the

image function u. Both the terms in (9) are well defined

in the space:

W1,2ð�Þ ¼ fu 2 L2ð�Þ;ru 2 L2ð�Þ2g: ð10Þ

The problem inffJðuÞ, u 2W1,2g admits a unique solu-

tion characterized by the following Euler–Lagrange

equation:

@u

@t
¼ �k � ðk � u� u0Þ � Du ¼ 0, ð11Þ

where Du denotes the ‘‘Laplacian’’ of u. This PDE is a

boundary value problem with Neumann boundary

condition:

@u

@~n
¼ 0, ð12Þ

where ~n is the unit outward normal to the curve and

the initial condition:

uðx, y, 0Þ ¼ u0ðx, yÞ, ð13Þ

where u0 is the initial image. The initial condition in

(13) and boundary condition in (12) are assumed for all

the PDEs throughout this paper. Since the

‘‘Laplacian’’ operator is isotropic in nature, the diffu-

sion process will diffuse in all directions with equal

speed, which would eventually result in a smoothed

output image. Therefore, Tikhonov based regulariza-

tion is not well suited for images with sharp

discontinuities (edges or finer details). Further, it can

be easily noticed from the energy functional in (9) that

the Lp norm with p¼ 2 removes the noise but penalizes

more on the gradients corresponding to the edges.

Another easy observation is that, as p decrease from 2

to 1, the edge-preserving capacity of the filter gradually

increases, with a maximum value when p¼ 1.
Another improved regularization method was

proposed by Rudin et al. [5] (ROF-Model). This

method uses a total variational (TV) functional in

place of J(u), i.e.

JðuÞ ¼ TVðuÞ ¼

ð
�

jruj dx ¼

ð
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q
dx: ð14Þ

Among all the norms, only the TV norm allows

discontinuities and therefore, with the help of the TV

norm, one can recover the images without losing the

majority of edge features present in the images. The

ROF model can be written in energy minimization

form, as:

min

ð
�

jrujTV dx

subject to
1

2

ð
�

ðk � u� u0Þ
2 dx� j�j�2

� �
¼ 0:

ð15Þ

Here j � jTV is the TV norm associated with the image

function u. The ‘‘Lagrangian’’ of (15) is written as:ð
�

jruj dxþ
�

2

ð
�

ðk � u� u0Þ
2 dx� j�j�2

� �
: ð16Þ

The energy functional for the ROF model can be

written as:

JðuÞ ¼
�

2

ð
�

ðk � u� u0Þ
2 dx� j�j�2

� �
þ

ð
�

jrujdx:

ð17Þ

The Euler–Lagrange equation associated with this

energy functional can be written as:

@u

@t
¼ �k � ðk � u� u0Þ � r:

ru

jruj

� �
: ð18Þ

The PDE defined in (18) can be written as:

�k � ðk � u� u0Þ � r:
ru

jru

� �
¼ 0, ð19Þ

when the steady state is reached. The PDE obeys the

boundary condition (12) and initial condition (13). One

can easily find that (19) is degenerate when 1=ru! 0.

Hence, it is common to perturb the initial value of the

TV norm with a small positive quantity �. With the

perturbation defined above the TV norm is

modified as: ð
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jruj2 þ �

q
dx, ð20Þ

where � is a small positive parameter. Hereafter we

denote this perturbed TV norm by:
Ð

�jruj� dx. The

natural choice of the space in which the terms in (17)

are well defined is

V ¼ fu 2 L2ð�Þ;ru 2 L1ð�Þ2g: ð21Þ

Many methods have been suggested in the litera-

ture to solve the Euler–Lagrange equation in (19);

see [16,21]. All these methods belong to the

time-dependent approximation of the ill-conditioned

Euler–Lagrange equation in (19). Both the approaches

in [16,21] are inefficient, because the steady state is

reached in a very small time step, when the explicit
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scheme is used. The following formulation is due to
Rudin et al. [5].

unþ1t � unt
Dt

¼ ��k � ðk � unt � u0Þ þ r:
run

jrunj�

� �
, ð22Þ

with the initial condition (13) and the boundary
condition (12). Here � denotes the regularization
parameter. As t increases we obtain the restored
versions of the input image. The evolution equation
in (22) converges very slowly. The diffusion term in
(22) is parabolic and is singular for smaller values of
jruj. Hence, it would be beneficial to put a restriction
on the time-step parameter in order to ensure the
stability of the evolution process. This is described by
the Courant–Friedrichs–Levy (CFL) condition which
relates the time step Dt to the space step Dx by:

Dt=Dx � cjDuj, ð23Þ

where c4 0.
Marquina and Osher [13], in their MO-based

model, relax this CFL condition, in order to avoid
the difficulties due to the time-step constraints. Their
method is a time-dependent model that accelerates the
movement of level-curves of u and regularizes the
diffusion term in a nonlinear way. They propose to
multiply the Euler–Lagrange equation in (19) by the
magnitude of the gradient; the model can be read as:

ut ¼ �jruj� k � ðk � u� u0Þ þ jrujr:
ru

jruj�

� �
, ð24Þ

with the boundary condition in (12) and the initial
condition in (13). One can easily observe in (24) that
the diffusion term is purely the mean curvature motion
(MCM) [22]. In MCM the level-curves move towards
the zeros of k � u� u0, with a speed proportional to
their mean curvatures. Therefore, the noise gets
diffused at a faster rate and the steady state is attained
quickly. The areas where k � u� u0 is zero or in the
homogeneous areas, only the anisotropic diffusion
(induced by MCM) will be active (the effect of the
fidelity term will be zero), whereas, at the non-zero
points of k � u� u0, the fidelity term will give a
contribution regularized by the magnitude of the
gradient. This would eventually retain and sharpen
the edges while denoising the images. Analytically it
can be shown that this solution procedure approaches
the same steady state as in (19).

The anisotropic nature of the MCM forces the filter
to diffuse only in the direction tangent to the
level-curve, because MCM has a component only
along the tangent and the component normal to the
curve is zero. This property of MCM is highly
desirable in the areas of the image dominated by the
high-frequency components (or edges and finer

details). However, in the constant-intensity areas
MCM will result in forming constant-intensity patches
causing the stair-case effect.

3. Proposed model

In this paper we propose to couple the fidelity term in
(24) with a diffusion term, which behaves like MCM in
the areas of the image dominated by edges and finer
details, and like a ‘‘Laplacain’’ filter in the homoge-
neous intensity areas. The proposed model results in
enhancement of edges, while removing the noise in an
anisotropic manner. The proposed method can be
mathematically formulated as:

ut ¼ ��jrujk � ðk � u� u0Þ þ c ��ðjruj�Þu		 þ u


� �

,

ð25Þ

where 
 is the direction along the level-curve and 	 is
the direction along the gradient. The function
��ðxÞ ¼ 1 if x5 �, zero otherwise. jruj� is the magni-
tude of the gradient of the Gaussian convolved version
of the image (with the standard deviation �). The
initial condition (13) and boundary condition (12) are
assumed for this PDE as well. One can easily observe
from (25) that in constant-intensity areas the function
�ð�Þ will return one and the diffusion term will
transform to an ordinary ‘‘Laplacian’’ filter (r2u),
which is isotropic. Therefore, the diffusion term is:
u

 þ u		. Note that the term u

 in (25) denotes MCM.
In the regions dominated by edges and finer details, the
function ��ðxÞ will return the value zero; this causes the
filter to behave like a MCM filter. The parameter � in
the function ��ð�Þ is a gradient threshold parameter.
This parameter provides the necessary input to the
filter to switch between isotropic and anisotropic
behavior. When the value of � is kept very low (near
to zero), the filter switches to a ‘‘Laplacian’’ filter, only
in the constant-intensity areas, whereas, when the
value of � is quite high, then some of the edge features
having the gradient magnitude value less than � will get
smoothed out. Since the smooth regions need not
always be constant-intensity regions, the switching of
the filter may not give impressive results, if the value of
� is kept very low. Therefore, one should take due care
while selecting the value of � for obtaining proper
results. The parameter � controls the smoothing and
fidelity characteristics of the filter. When � is very
small, then the noise features remain not much affected
by the diffusion flow. But when � is quite large then
denoising happens to a considerable extent and the
stability of the filter will be greatly affected. Therefore,
the parameter � can be chosen as the maximum value
allowed for stability. The selection of the parameter �
is crucial in getting the desired results. The parameter c
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determines the magnitude of diffusion. The magnitude
of diffusion increases with an increase in the value of c.
An analysis of the effect of each parameter on the
result of the filter is done in Section 4.3.

The anisotropic diffusion term in (25) will not
result in approximating the homogeneous regions with
constant patches, which eventually results in the
stair-case effect. Since the filter does not have any
component in the direction of the gradient (in the
high-gradient regions in the image), the high-frequency
components like the edges and the finer details are not
severely affected by the diffusion flow. The proposed
filter can still relax on the CFL condition as in (24).
This filter speeds up the level-curves of the image
function u and regularizes the parabolic diffusion term
in a nonlinear way. The initial condition (13) and the
boundary condition (12) are assumed for this PDE as
well. This solution is well-posed in the space defined
by (21) and the unique minimum exists for the PDE
in (25) [23].

3.1. Numerical implementation

We have used an explicit Euler scheme for implement-
ing the diffusion equation in (25). Since the equation
contains a hyperbolic diffusion term, we use the upwind
scheme proposed by Sethian et al. [22]. The usual
central difference schemes do not work well with the
hyperbolic PDE. In other words, the usual central
difference scheme results in numerical instabilities in
the case of hyperbolic PDEs. We use the ordinary
central difference scheme for rest of the terms in the
equation. Using the upwind scheme for solving jruj
in (25), results in the following expression:

jruj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x þD2
y

q
ð26Þ

where Dx ¼ minmodðuþx ðx, yÞ, u
�
x ðx, yÞÞ, Dy ¼

minmodðuþy ðx, yÞ, u
�
y ðx, yÞÞ and the ‘‘minmod’’ operator

is defined as:

minmodðx, yÞ ¼
minðjxj, j yjÞ if xy4 0 ,

0 Otherwise.

�

Here

uþx ðx, yÞ ¼ uðxþ 1, yÞ � uðx, yÞ,

u�x ðx, yÞ ¼ uðx, yÞ � uðx� 1, yÞ,

uxðx, yÞ ¼ ðu
þ
x þ u�x Þ=2,

uþy ðx, yÞ ¼ uðx, yþ 1Þ � uðx, yÞ,

u�y ðx, yÞ ¼ uðx, yÞ � uðx, y� 1Þ,

uyðx, yÞ ¼ ðu
þ
y þ u�y Þ=2: ð27Þ

For all the other finite differences in (25), we use the
usual central difference schemes. Using the central

difference scheme, u		 is discretized as:

uxxjuxj
2 þ 2uxyuxuy þ uyyjðuyÞj

2

1þ juxj
2 þ juyj

2
,

and u

 is discretized as:

uxxjuyj
2 � 2uxyuxuy þ uyyjuxj

2

1þ juxj
2 þ juyj

2
:

With the help of above discretizations, we can
discretize the PDE in (25). Now, the convolution
kernel is a Gaussian kernel as defined in (3) with
�¼ 0.2.

4. Results and discussion

We have used standard test images ‘‘Lena’’, ‘‘phan-
tom’’, ‘‘mri’’ and ‘‘hibiscus’’ to test the performance of
various methods existing in the literature and the one
proposed by us. The images ‘‘Lena’’, ‘‘phantom’’, ‘‘mri’’
and ‘‘hibiscus’’ belong to different classes; ‘‘Lena’’ is a
partially textured image with homogeneous intensity
regions, ‘‘phantom’’ is a constant-intensity image with
different constant-intensity regions, ‘‘mri’’ is a textured
image with abundant gray-level variations and ‘‘hibis-
cus’’ is a vector-valued (color) image. These four test
images are chosen to demonstrate the capability of the
methods under comparison to handle different kinds of
images. Note that the test images are degraded using a
blurring kernel with mean zero and standard deviation
�¼ 10 and Gaussian white noise (independent of the
data), resulting in a noisy image with a signal-to-noise
ratio (SNR) of 10 dB. Further, all the test images are
normalized in the range [0, 1] in all our experiments. We
use three qualitative measures: contrast-to-noise ratio
(CNR) [24], Pratt’s figure of merit (FOM) [25] and the
Mean Structural SIMilarity (MSSIM) index [26] to
measure the quality of the filtered images quantita-
tively. The time-step parameter Dt is evaluated as:
1=ð1þ �=�Þ, where � is the regularization parameter and
we have fixed it as 0.06 in our experiments. The
parameter � is used to regularize the gradient (to avoid
blowing up of the values at the zero-gradient areas), the
parameter is fixed as 0.04, and the value of the
parameter c in (25) is kept as 1 in all our experiments.
However, we have shown the effect of all these
parameters on the filtered output by varying their
values.

In each experiment, the performance of the pro-
posed filter is compared with that of other filters
like: the FFT regularization filter (FFT-REG) [20],
the Sobel regularization filter (SOB-REG) [20],
the Tikhonov regularization method [12], the
TV-regularization model [5] and the model proposed
by Marquiana and Osher (MO) [13]. The performance
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of each method is quantified perceptually (in figures)
and quantitatively (in tables and graphs). The results
are demonstrated, compared and analyzed in subse-
quent sections.

4.1. The stopping rule

A number of stopping rules were proposed for deter-
mining the optimal number of iterations to get the
desired results. Many of them rely on the normalized
mean square error in the subsequent iterations or
absolute error in each iterations, etc. [5,7,27]. Here we
propose to use the normalized relative root mean
square error (NRRMSE) in each iteration to put a
hold on the iteration process. The root mean square
error (RMSE) is defined as:

RMSEn
¼

1

M�N

XN
x¼1

XM
y¼1

ðuOðx, yÞ � unðx, yÞÞ2

 !1=2

,

ð28Þ

where uO is the original noise-free image and un is the

image obtained after n iterations using the method

under consideration. We define NRRMSE as:

NRRMSE ¼ inf
n

jRMSEn
�RMSEnþ1

j

RMSEnþ1
: ð29Þ

The NRRMSE keeps on decreasing with each iteration

and becomes less than a threshold t after a finite

number of iterations. The infimum of the values of n,

for which the NRRMSE becomes less than the

threshold t, is taken as the optimal iteration number.

The reconstruction will be optimal when the iteration

number is fixed in this way. The graph in Figure 1

shows the optimal iteration number for different

methods existing in the literature and for the method

proposed in this paper. In Figure 1(a) we plot the

NRRMSE of different methods along with the pro-

posed one, for different iteration numbers. In

Figure 1(a) the variation of NRRMSE against the
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Figure 1. (a) NRRMSE plotted for different methods for the image ‘‘phantom’’; (b) NRRMSE plotted for MO-based and the
proposed method against the number of iterations. (The color version of this figure is included in the online version of the
journal.)
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Figure 2. Results of various filters applied to the image ‘‘Lena’’: (a) original figure; (b) blur and noisy figure (out of focus blur
generated using a Gaussian kernel; SNR of noisy image is 10 dB); (c) after applying the FFT-REG filter; (d) after applying the
SOB-REG filter; (e) after applying the Tikhonov method; ( f ) result of applying the TV model; (g) result of the MO model;
(h) result of the proposed model. Row profile of the image ‘‘Lena’’ (200th row is selected): the one-dimensional profile of the
original, noisy and reconstructed images: (i) after applying the FFT-REG filter; (j) after applying the SOB-REG filter; (k) after
applying the Tikhonov method (l) result of applying the TV model; (m) result of the MO model; (n) result of the proposed model.
(The color version of this figure is included in the online version of the journal.)
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Figure 2. Continued.
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number of iterations is not clearly visible for the
MO-based and the proposed methods, so we plot
these two methods separately in Figure 1(b). The
images shown in Figures 2–5 are taken after the
corresponding optimal number of iterations for each
method. The threshold for calculating the iteration
number based on the NRRMSE in (29) is chosen as

0.4�10�4 and the value of the parameter � in (25) is
chosen to be 10.

4.2. Quality metrics

There are many statistical methods proposed in the
literature to quantify the quality of reconstruction

Figure 4. Results of various filters applied to the image
‘‘mri’’: (a) original image; (b) blur and noisy image (out of
focus blur is generated using a Gaussian kernel; SNR of
noisy image is 10 dB); (c) after applying the FFT-REG Filter;
(d) after applying the SOB-REG filter; (e) after applying the
Tikhonov method; ( f ) result of applying the TV model;
(g) result of the MO model; (h) result of the proposed model.

Figure 3. Results of various filters applied to the image
‘‘phantom’’: (a) original image; (b) blur and noisy image (out
of focus blur is generated using a Gaussian kernel; SNR of
noisy image is 10 dB); (c) after applying the FFT-REG filter;
(d) after applying the SOB-REG filter; (e) after applying the
Tikhonov method; (f) result of applying the TV model; (g)
result of the MO model; (h) result of the proposed model.
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methods [24]. One of the most widely used quality
measures is the contrast-to-noise ratio (CNR), which
measures the contrast enhancing capacity of the filter:

CNR ¼
�o � �bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2b þ �

2
o

q ,
ð30Þ

where �o, �b are the means of the object and

background pixels and �2o , �
2
b are the variances of the

object and background pixels, respectively. Table 1

shows the CNR values of different methods for the

input images ‘‘phantom’’, ‘‘Lena’, ‘‘mri’’ and

‘‘hibiscus’’.
However, CNR does not reflect the edge, lumi-

nance and structure-preserving and enhancing capa-

bilities of the methods. These facts motivate one to use

the following quality measures: Pratt’s figure of merit

(FOM) [25] and the Structural SIMilarity (SSIM)

index [26]. These quality metrics (FOM and SSIM),

measure the edge and structure preserving capabilities

of the method under consideration. The details of these

methods are highlighted below.
The performance of various methods in preserving

the edges and finer details is compared using Pratt’s

figure of merit (FOM) [25]:

FOM ¼
1

maxfN̂,Nidealg

XN̂
i¼1

1

1þ d2i �
, ð31Þ

Figure 5. Results of various filters applied to the image
‘‘hibiscus’’: (a) original image; (b) blur and noisy image
(out of focus blur is generated using a Gaussian kernel; SNR
of noisy image is 10 dB); (c) after applying the FFT-REG
filter; (d) after applying the SOB-REG filter; (e) after
applying the Tikhonov method; ( f ) result of applying the
TV model; (g) result of the MO model; (h) result of the
proposed model.

Table 3. The MMSIM of various methods compared with
the proposed one. The SNR of the noisy image is 10 dB.

Images Noisy TV Tikhonov MO Proposed

Lena 0.669 0.588 0.658 0.652 0.685
phantom 0.656 0.751 0.647 0.698 0.919
mri 0.666 0.821 0.747 0.798 0.891
boat 0.716 0.751 0.672 0.718 0.909

Table 1. The CNR of various methods compared with the
proposed one. The SNR of the noisy image is 10 dB.

Images Noisy TV Tikhonov MO Proposed

Lena 13.5 12.05 13.6 14.1 16.07
phantom 20.8 33.6 30.7 40.48 66.48
mri 22.1 34.3 29.7 38.9 67.4
boat 20.1 33.8 30.7 41.9 69.4

Table 2. The FOM of various methods compared with the
proposed one, for the images corrupted by an SNR 10 dB.

Images Noisy TV Tikhonov MO Proposed

Lena 0.503 0.410 0.530 0.492 0.582
phantom 0.516 0.449 0.421 0.5254 0.740
mri 0.546 0.519 0.441 0.614 0.751
boat 0.513 0.499 0.411 0.554 0.810
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where N̂ and Nideal are the number of detected and

ideal edge pixels, respectively, di is the Euclidean

distance between the ith detected edge pixel and the

nearest ideal edge pixel and � is a constant typically set

to 1/9. FOM ranges between 0 and 1, with unity for

ideal edge detection. We apply the Canny edge detector

[28] to retrieve the edges in the original and recon-

structed images. The standard deviation of the

Gaussian kernel in the Canny detector is chosen as

�¼ 0.1. Table 2 shows the results of the FOMmeasure,

for different input test images filtered using various

methods in the literature and the one proposed in this

work.
In addition to the aforementioned methods, we also

use the SSIM index to compare the luminance, contrast

and structure of two different images [26]. The moti-

vation in using this approach is to find a more direct

way to compare the structures of the reference and the

distorted signals. This new framework for the design of

image quality measures was proposed, based on the

assumption that the human visual system is highly

adapted to extract structural information from the

viewing field. The SSIM is formulated as:

SSIMðx, yÞ ¼
ð2�x�y þ C1Þ � ð2�xy þ C2Þ

ð�2
x þ �

2
y þ C1Þð�2x þ �

2
y þ C2Þ

, ð32Þ

where x and y denote the content of the local windows

in the original and reconstructed images, respectively.

The term �xy denotes the covariance of x and y, and
the terms �2x and �2y denote the variance of x and y,
respectively. Here C1 ¼ ðk1LÞ

2 and C2 ¼ ðk2LÞ
2, where

L is the dynamic range of pixel values and k1 ¼ 0:01,
k2 ¼ 0:03 are constants. The measure is applied for
non-overlapping windows in both images (original and
reconstructed). In this work we measure the
mean-SSIM (MSSIM), which is an index to evaluate
the overall image quality. It is defined as:

MSSIMðX,YÞ ¼
1

M

XM
j¼1

SSIMðxj, yj Þ, ð33Þ

where X and Y are the original and reconstructed
images, respectively, xj and yj denote the content of the
jth local window in the reference and distorted images,
respectively, and M is the number of local windows in
the image. Table 3 shows the MSSIM tabulated for
different test images filtered using various methods in
the literature and the one proposed in this paper.

4.3. Analysis and discussion

Figures 2(a)–(h) and 3 are the output images after
applying the different filters in the literature and the
one proposed in this paper on the test images ‘‘Lena’’
and ‘‘phantom’’, respectively. The fact that the pro-
posed method (the image in Figures 2(h) and 3(h)) well
preserves the edges and finer details (while denoising

Figure 6. A textured portion of the image ‘‘Lena’’ enlarged (for the original and filtered images): (a) original image; (b) blur and
noisy image (out of focus blur generated using a Gaussian kernel; SNR of noisy image is 10 dB); (c) after applying the FFT-REG
filter; (d) after applying the SOB-REG filter; (e) after applying the Tikhonov method; ( f ) result of applying the TV model; (g)
result of the MO model; (h) result of the proposed model.
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the image) is quite evident from these images.
A textured portion from the image ‘‘Lena’’ (after
applying various filtering methods) is enlarged and
shown in Figure 6 for better visibility. From these
enlarged portions, we observe that the capability of the
proposed method to retain the finer details and edges is
better in comparison to the other methods, whose
output is shown in the same figure. We present the
response of the proposed method along with the other
relevant methods in the literature, when applied to the
textured medical image ‘‘mri’’ and the color image
‘‘hibiscus’’ in Figures 4 and 5, respectively. From these
two output images we can arrive at the conclusion that
the proposed method can handle textured and color
images, the same way it handles the other aforemen-
tioned images.

A one-dimensional row profile from the image
‘‘Lena’’ is shown in Figures 2(i)–(n). The 200 th row is
captured from the original, noisy and filtered images.
This profile gives a clear understanding of the filtering
process. We have plotted three row profiles in each
graph in Figures 2(i)–(n). The profiles in each graph
correspond to the original image shown as a red
continuous line, the blurred and noisy image is shown
as the dotted black line and the filtered output is shown
as an intermediate dotted blue line. Each graph shown
in the figure highlights the output of a specific filtering
method. From these graphs, we infer that filtering
methods like Tikhonov and Sobolev smooth out the
high-frequency components corresponding to the edges
and finer details. The Tikhonov and Sobolev filters are
defined on a space which does not allow discontinuities
in the solutions, and hence the filtered images appear
smooth/blurred. However, the noise features are
removed effectively by these filters. The other filters,
viz. TV, MO and the proposed method are defined on
a space which allows discontinuities in the solution.
Therefore, these filters retain the edges while denoising
the images. Among the methods that allow disconti-
nuities in the solution space, the proposed method well
preserves the edges and finer details due to the
switching behavior of the filter based on the underlying
local gradient features. The demonstration in
Figure 2(n) substantiates this fact.

For analyzing the quantitative measures like CNR,
FOM and SSIM, we have used the test image ‘‘phan-
tom’’. The response of the methods for other test
images is similar to that of the image ‘‘phantom’’.
Therefore, the resultant images (filtered output images)
are not shown explicitly for other test images.
However, these measures are tabulated and shown in
the tables, for different images at a specific SNR value.
In the same manner, the graph showing the variation
of the qualitative measures (CNR, FOM and SSIM)
for different noise levels (of input images) are

demonstrated only for the image ‘‘phantom’’. The

results for other test images follow the same pattern as

that of the image ‘‘phantom’’.
The CNRs for various methods are tabulated in

Table 1. From the table it is quite evident that the

proposed method enhances the contrast better com-

pared to the other existing methods. The CNR is

calculated for the images after applying the desired

filter till the stopping rule (given in Section 4.1) is

satisfied. We measured the CNR for the region R1

(in the foreground) taking R2 in the background as

shown in Figure 7. Similarly the CNR is measured for

the region R3 taking R2 in the background. The graph

in Figure 8 shows the variation of CNR for different

methods at different noise variances (for the input

image ‘‘phantom’’). From this graph one can easily see

that the proposed method improves the CNR at

various levels of noise variances.
Pratt’s FOM measures the edge-preserving capa-

bility of the methods. As mentioned earlier, a Canny

edge detector [28] is used to localize the edges in the

original and reconstructed images, respectively. The

parameter (variance) of the Canny edge detector is

chosen to be 0.1 for our experiments. Table 2 shows the

numerical results of Pratt’s FOM on the filtered images

(and the noisy image), which are filtered using various

methods in the literature and the proposed method.

The values in Table 2 are in support of the claim that

the proposed method preserves and enhances the edges

as compared to the other methods in the literature. We

plot the variation of the FOM measured under

different noise levels (for the input image), for various

Figure 7. The regions selected for conducting CNR testing.
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methods described in the literature and the proposed

method in Figure 9. The graph is quite self-explana-

tory, regarding the performance of the proposed

method. Further, the results of the Canny edge

detector on the filtered outputs are shown in

Figure 10. The output image after applying the

Canny edge detector on the image filtered with the

proposed filter is shown in Figure 10(h). In this image,

one can observe that the edges are preserved and the

noise features are removed well, in comparison to the

other filters.
The MSSIM shows the structure-preserving capa-

bility of the method in hand. The structural similarity

index is a key measure to identify the structure-

preserving capability of the methods. The SSIM values

are tabulated in Table 3 for different input images

filtered with various methods in the literature and the

proposed method. It is obvious from this table that the

proposed method can well preserve the structural

details as compared to other methods in the literature.

We plot the variation of MSSIM measured under

different noise levels for various methods described in

the literature and the proposed method in Figure 11.

This provides a better analysis of the performance of

the proposed method.
The effects of various parameters in the proposed

filter in (25) on the filtered images are shown in

Figure 12. We have used three parameters to control

the magnitude of the diffusion and regularize the filter.

The parameter � controls the magnitude of the

diffusion and the fidelity terms. We have shown

the output images for three different values of �,
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Figure 8. CNR plotted against the SNR for the image ‘‘phantom". (The color version of this figure is included in the online
version of the journal.)
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Figure 9. Pratt’s FOM plotted against SNR for the image ‘‘phantom’’. (The color version of this figure is included in the online
version of the journal.)
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i.e. �¼ 0.2,0.06 and 0.006, in the first row of Figure 12.
As the value of � decreases the effect of the fidelity
term is quite evident. In other words, the diffusion
keeps on decreasing with a decrease in the value of �.

In the image shown in Figure 12(c), the value of � is

chosen to be quite small. Therefore, it is easy to notice

that the noise features are not removed properly or the

diffusion has not removed the noise in a better scale.
When the value of � is large, the diffusion flow

removes the noise, but the numerical instability is

highly evident in the results. Hence, � is chosen to be

the maximum value allowed for the stability. The
second row of Figure 12 shows the output for various

gradient threshold parameters �. It is evident from

these figures that the increase in value of � causes a

better smoothing in the homogeneous image areas. The
value of � determines the switching threshold for the

filter. If it is quite high then, for a gradient values less

than the threshold value, the filter will act as a

‘‘Laplacian’’ and will smooth out those gradients. We
show the result of the filter for three different threshold

values (�¼ 5,15 and 25). The effect of the parameter c

on the filtered output is shown in the last column of
Figure 12. The magnitude of the diffusion is directly

proportional to the value of c. The filtered outputs for

three different c values (for c¼ 0.2,0.9 and 1.5) are

shown in this row. The figure with c¼ 0.2 is not
denoised properly, whereas the output for c¼ 1.5

shows a better denoised image.

5. Conclusions

In this paper we have proposed a time-dependent
anisotropic diffusion model for image restoration. The

model attains a stable state at a faster rate as compared

to other models in the literature. This model diffuses

isotropically in the constant-intensity areas and aniso-
tropically in the areas dominated by edges, textures

and finer details. The response of the filter is analyzed

using different kinds of images having different mag-

nitudes of texture features. The filter is found to
enhance the images, with varying magnitude of the

texture features. Further, the filter is applied on vector-

valued images as well. The results shown in the

previous section clearly demonstrate the capacity of
the filter to properly enhance textured, partially

textured, constant-intensity and color images with

utmost attention to the edge and finer details (while
denoising them). The behavior of the method is

analyzed for different parameters used for fine-tuning

the performance of the filter. Under the various

conditions mentioned above, the filter is found to
behave robustly in reconstructing the images. Finally,

the quantitative and qualitative results are in favor of

the claim that the proposed method deblurs and

denoises the images very well, as compared to the
other methods available in the literature.

Figure 10. The result of the CANNY edge detector applied
to the image ‘‘Lena’’ (filtered using different methods):
(a) original image; (b) blur and noisy image (out of focus blur
generated using a Gaussian kernel; SNR of noisy image is
10 dB); (c) after applying the FFT-REG filter; (d) after
applying the SOB-REG filter; (e) after applying the
Tikhonov method; ( f ) result of applying the TV model;
(g) result of the MO model; (h) result of the proposed model.
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Figure 12. Proposed method applied to the image ‘‘Lena’’ with various values for the parameters. The first row (a, b and c)
shows the output images for three different values for the parameter � in (25) �¼ 0.2, �¼ 0.06, �¼ 0.006, respectively. The
second row (d, e and f ) shows the output images for three different values for the threshold parameter �¼ 5, �¼ 15, �¼ 25,
respectively. The last row (g, h and i ) shows the output images for three different values for the parameter c¼ 0.2, c¼ 0.9, c¼ 1.5,
respectively.
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