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Abstract
A layer-wise shear deformation theory is used to analyze the smart damping of multiferroic
composite or magneto-electro-elastic (MEE) plates. The intent of this analysis is to investigate the
need for incorporating additional smart elements for controlling the vibrations of multiferroic
composite plates. Active constrained layer damping (ACLD) treatment has been incorporated to
alleviate the vibration of MEE plate. A layer of viscoelastic material is used as constrained layer for
the ACLD treatment. The coupled constitutive equations of multiferroic (ferroelectric and
ferromagnetic) composite materials along with the total potential energy principle are used to derive
the finite element formulation for the overall multiferroic or MEE plate. Maxwell’s electrostatic and
electromagnetic relations are used to compute the electric and magnetic potential distribution.
Influence of obliquely reinforced piezoelectric fibers in the piezoelectric layer of the ACLD treatment
has also been investigated. In order to investigate the importance of using ACLD treatment for an
active damping of multiferroic or MEE plate, an active control of MEE plate has also been analyzed
by providing the control voltage directly to the piezoelectric layers of the MEE substrate plate
without using the ACLD treatment. The present study suggests that for an optimal control of MEE
plates, the smartness element such as the ACLD treatment is essentially required.

Keywords: multiferroic composite, magneto-electro-elastic, active control, active constrained
layer damping

(Some figures may appear in colour only in the online journal)

1. Introduction

Advanced technologies coupled with advanced manufactur-
ing of composites have permitted the integration of smart
composites not only in the aeronautical industries but also in
the fields of automotive, civil, marine and medical industries.
It is evident from the literature that the piezoelectric ceramic
materials exhibit dominant role in the field of active vibration
control of featherweight adaptable structures because of the
advantages offered by these materials like; they are hard,
dense and can be manufactured to almost any shape or size.
Consequently, piezoelectric transducers have become
increasingly popular in vibration control applications due
their piezoelectric and converse effects. They can be used as
sensors and as actuators in structural vibration control sys-
tems. In addition, they provide excellent actuation and sen-
sing capabilities on account of their ability to transform

mechanical energy into electrical energy and vice versa.
Bailey and Hubbard [1] designed an active vibration damper
for cantilever beam using distributed-parameter actuator made
of piezoelectric polymer (vinylidene fluoride). Crawley et al
[2] developed an analytical and experimental piezoelectric
actuators as elements of intelligent structures. Baz and Poh [3]
utilized the piezoelectric actuators to control the vibrations
flexible beams while Clark et al [4] used the piezoelectric
actuators for thin plates. Reddy [5] presented a theoretical
formulation and finite element model of the laminated com-
posite plate integrated with piezoelectric sensors and actua-
tors. Using a piezoelectric material, active constrained layer
damping (ACLD) of plates is studied by Baz and Ro [6] and
this concept is used to control the vibration of structures
[7–10]. The piezoelectric effect of the piezo-ceramic materials
assured as a promising candidate for sensors and actuators
in flexible structures. The sensors and actuators made of
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piezo-ceramic materials combined with the flexible structures,
accomplish the cause of control and monitor the health of
structural system. Such structures amalgamated with the
piezoelectric layer/patches with self-regulating and guiding
capabilities are generally termed as ‘smart structures’. If the
distributed actuators are made of monolithic piezoelectric
materials having small coupling constants, high control
voltage is required to alleviate the vibrations of flexible host
structures. Hence, the research on the development of ACLD
treatment using low-control-coefficient solid piezoelectric
materials is evolved [11]. The typical ACLD treatment con-
sists of a viscoelastic layer (constrained layer) which is
sandwiched between the piezoelectric layer (constraining
layer) and the substrate (host structure). If the piezoelectric
layer of the ACLD treatment is not activated with applied
voltages, the ACLD treatment turns into passive constrained
layer damping (PCLD) treatment due to the presence of vis-
coelastic layer in the middle of substrate structure and
piezoelectric layer. Thus, the ACLD treatment has gained
more importance and established as an efficient control sys-
tem because of providing both active and passive damping
effect at the same time during the operation of the structure
[12, 13]. For over a decade, Ray and his coworkers [14–19]
have been carrying out the extensive research on using the
ACLD treatment for active control of composite plates and
shells. They have observed that the considerable enhancement
of the damping characteristics of laminated composite struc-
tures when the piezoelectric fiber orientation angle is zero in
the constraining layer of the ACLD treatment. Chantalakhana
and Stanway [20] used the ACLD treatment for a composite
plate with clamped-clamped boundary conditions. Optim-
ization of an active and passive damping of the hybrid active-
passive laminated sandwich plate with viscoelastic core was
studied by Araújo et al [21]. The same work has been
extended by Araújo et al [22] for a sandwich plate with
piezoelectric sensor and actuator bonded on the exterior faces.
An optimal positioning of piezoelectric patch location for has
also been studied.

Recently, an interesting and unique class of composites
known as multiferroic or magneto-electro-elastic (MEE) com-
posite consisting of ferroelectric/piezoelectric (BaTiO3) and
ferromagnetic/piezomagnetic (CoFe2O4) phases has attracted
the interest of researchers on account of promising properties of
multiferroic materials. Composite structures made of piezo-
electric and magnetostrictive layers are subjected not only to the
geometrical and material property constraints but also to the
coupled actions of electro-elastic, magneto-elastic, and electro-
magnetic fields which are absent in the individual constituents.
A distinguished feature of the multiferroic composite materials
is that they possess the capability of transforming the energies
among elastic, electric and magnetic fields forming electro-
elastic, magneto-elastic and electro-magnetic coupling effects
[23, 24]. These interesting properties might have led the
researchers to use multiferroic composite materials in the field
of control system, micro-electro-mechanical systems, precision
instruments and medical instruments like ultrasonic imaging
devices etc. Hence, it is necessary to take care and caution while
designing new smart structures consisting of multiferroic

composites. Many researchers have paid their attention to the
problems related to MEE structures. Pan and Heyliger put
together a great effort to study the free vibration analysis [23]
and static fields [24] of MEE multilayered rectangular plates
under simply supported edge conditions with different electrical
boundary conditions. They noticed the similarity with pure
piezoelectric plates for some of the lower order natural fre-
quencies. Liu and Chang [25] obtained the closed form
expression for the transverse vibration of MEE plate and
demonstrated the natural frequencies of two-layered BaTiO3

(barium titanate)—CoFe2O4 (cobalt ferrite) plate for different
volume fractions of BaTiO3. Ramirez et al [26] analyzed the
free vibration of functionally graded MEE plates using a dis-
crete layer model and obtained the natural frequencies for dif-
ferent aspect ratios, gradation type, and boundary conditions.
Buchanan [27] obtained the natural frequencies of MEE infinite
plate and compared with those of multiphase composite plate.
Lage et al [28] studied the static analysis of MEE plate using
layerwise partial mixed finite element model. Pan [29] used a
propagator matrix method to derive an exact solution for three-
dimensional multi-layered MEE plates and later extended to FG
MEE plates by Pan and Han [30]. Wang et al [31] implemented
the state vector approach to analyze multilayered MEE plate.
The same approach is used for free vibration of MEE hybrid
laminated plates by Wang et al [32]. Moita et al [33] used the
higher order shear deformation theory to develop a finite ele-
ment model for the static and free vibration analysis of MEE
plates. Chen et al [34] derived the independent state equations
for the free vibration analysis of isotropic MEE plates and they
noticed that the coupling coefficients have no effect on lower
order natural frequencies. Bhangale and Ganesan used the finite
element method to investigate on free vibration of FG MEE
plates [35] and cylindrical shell [36]. They also noticed that the
effects of MEE coupling terms are insensitive to some of the
lower modes. Chen et al [37] studied the free vibration of FG
multilayered MEE plates.

Most recently, Gou et al [38] investigated the static
deformation of anisotropic four layered MEE plates under
surface loading based on the modified couple-stress theory.
Xin and Hu [39] analyzed the free vibration of simply sup-
ported multilayered MEE plates by using the state space
approach and the discrete singular convolution algorithm.
Reddy’s third-order shear deformation theory was imple-
mented to study the free vibration of a MEE rectangular plate
by Shooshtari and Razavi [40]. Further, nonlinear analysis of
MEE plates has been attracted the considerable interest of
researchers. Shooshtari and Razavi [41] investigated a non-
linear free and forced vibration of transversely isotropic rec-
tangular MEE thin plate using thin plate theory along with the
von Kármán procedure. They extended the same procedure
for linear and nonlinear free vibration of multilayered MEE
doubly curved shell on elastic foundation [42] and also stu-
died the nonlinear free vibration of symmetric MEE laminated
rectangular plate using first order shear deformation theory
(FSDT) [43]. Kattimani and Ray [44, 45] investigated on the
control of geometrically nonlinear vibrations of MEE plates
and shells using 1–3 piezoelectric composites (PZC) then
later extended their study for FG MEE plates [46]. In
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addition, the comprehensive research on MEE plates and
shells has been investigated as a doctoral study by Kattimani
[47]. Milazzo [48] presented a smart laminate free vibration
of FG MEE plate using refined equivalent single layer mod-
els. He has also studied the influence of large deflections on
MEE plate response using FSDT [49]. Farajpour et al [50]
investigated the nonlinear free vibration of size dependent
MEE nanoplates subjected to external electric and magnetic
potentials by considering the geometrical nonlinearity.

Since, the multiferroic or MEE plate composed of smart
materials can be a promising smart composite structure for
various applications, the necessity of using the additional
means of smart damping such as ACLD treatment for active
control of multiferroic plates must be investigated. However,
to the author’s best knowledge, the research concerning to the
control of multiferroic plates is not yet been reported in the
literature. In this paper, the author contemplates analyzing
the performance of ACLD treatment for active damping of
multiferroic composite plates. For the aforesaid investigation,
a finite element formulation has been derived to analyze the
active damping multiferroic plate integrated with the patches
of the ACLD treatment. The influence of different parameters
such as the effect of coupling coefficients, boundary condi-
tions, aspect ratio and the orientation of piezoelectric fiber in
the piezoelectric constraining layer of the ACLD treatment on
the response of the MEE plates have been thoroughly
investigated. The viscoelastic layer is used as the constrained
layer of the ACLD treatment. The frequency dependence of
the viscoelastic material has also been studied. The necessity
of the ACLD treatment is examined by inactivating the
ACLD patches and providing the feedback control system
directly to the piezoelectric layers of the MEE sandwich plate.

2. Problem description and governing equations

A multiferroic composite plate with the ACLD treatment
consisting of two patches placed on the top surface of the top

layer of the substrate plate is schematically represented in
figure 1. The middle layer of the composite plate is made of
ferromagnetic (magnetostrictive) while the bottom and the top
layers of the plate are made of ferroelectric (piezoelectric).
The viscoelastic layer is sandwiched between the piezo-
electric layer of the ACLD treatment and the MEE substrate
plate. The expanded view of figure 1 demonstrates the
orientation of the piezoelectric fiber reinforcement in the 1–3
PZC layer. The fiber orientation angle with z-axis is repre-
sented by λ and the fibers are coplanar with xz-plane. How-
ever, for the same orientation angle (λ), the piezoelectric
fibers can be considered as coplanar with yz-plane also. The
length a, width b and the total thickness H are considered
along with the x-, y-, and z-directions, respectively, while hp
and hv are the thickness of the constraining PZC layer and the
constrained viscoelastic layer of the ACLD treatment,
respectively. The equivalent single layer displacement theory
cannot be used to describe the structure made of layers of
dissimilar materials, for the reason that distinct in orders of
the elastic properties in the adjacent continua of the overall
structure. Consequently, the kinematics of the deformation of
the overall structure is defined by the layerwise shear defor-
mation theory [44]. The coupled constitutive relations for the
multiferroic composite solid substrate are given by
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where, Dz, Ez, Bz, and Hz are the electric displacement, elec-
trical field, magnetic induction, magnetic field, respectively,
along the z-direction; Cb

s[ ] and Cs
s[ ] are transformed elastic

coefficient matrices; μ33 and s
33Î are the magnetic perme-

ability constant and dielectric constant, respectively; d33, eb
s{ }

and qb
s{ } the electromagnetic coefficient, piezoelectric coef-

ficient vector and the magnetostrictive coefficient vector,
respectively. Further, the superscript s refers to the substrate,

Figure 1. Schematic diagram of a B/F/B multiferroic or magneto-electro-elastic plate integrated with two patches of ACLD treatment
composed of 1–3 PZC constraining layer.
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subscript b refers to bending, s refers to shear and T indicates
matrix transpose.

The conventional complex modulus approach is employed
to model the viscoelastic layer. The viscoelastic material used in
the present study is assumed to be linearly viscoelastic homo-
geneous and isotropic. The Young’s modulus E and the shear
modulus G of the viscoelastic material in the complex modulus
approach are given by

E G G G2 1 and 1 i 4( ) ( ) ( )u h= + = ¢ +

in which ν is the Poisson ratio, G′ is the storage modulus and η

is the loss factor at any particular operating temperature and
frequency. Thus, the constitutive relation for the viscoelastic
layer corresponding to the transverse shear stresses and strains is
given by

C 5s
v

s
v

s
v{ } [ ]{ } ( )s e=

in which C 1 0
0 1

,s
v ⎡

⎣⎢
⎤
⎦⎥[ ] = where, the superscript v represents the

viscoelastic layer. In the present method of finite element for-
mulation, the compatible constitutive relations for the 1–3 PZC
constraining piezoelectric layer of the ACLD treatment are
given by
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In equation (6), superscript p refers to piezoelectric layer, while
the transformed elastic coefficient matrices and coupling elastic
constant matrix Cbs[ ] are given by
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p

b
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s
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s
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However, the coupling elastic matrices when the orientation of
the piezoelectric fibers coplanar with the vertical xz- or yz-
plane, respectively are given by
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If the piezoelectric fibers are coplanar with both the xz- and the
yz-planes, the coupling matrix turns into a null matrix. In
addition, the piezoelectric coefficient matrices eb

p{ } and es
p{ }

appearing in equation (6), contain the transformed effective
piezoelectric coefficients of the 1–3 PZC as follows:
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The first variations of the potential energies of the substrate T ,psd
the viscoelastic layer Tpvd and the piezoelectric actuator layer

Tppd for the B/F/B plate can be expressed as follows:
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where Q1
f is the surface electric charge density of the top

piezoelectric layer, Q2
f is the surface electric charge density of

the bottom piezoelectric layer, Qy is the surface magnetic
charge density of the middle magnetostrictive layer and P is the
applied transverse distributed load on the top surface of the top
piezoelectric layer of the MEE plate. Since the thickness of the
viscoelastic layer considered is very small compared to the
thickness of other layers and its axial elastic constants are much
lower than that of the other layers, the strain energy of this layer
corresponding to the normal strains is negligible and is not
considered here. According to Maxwell’s electromagnetic
equations, the transverse electric field Ez and the magnetic field
Hz are related to the electric potential f and the magnetic
potential y in the following forms,

E
z

H
z

and 12z z ( )f y
= -

¶
¶

= -
¶
¶

It should be noted that for very small layer thickness, the var-
iation of the electric potential and the magnetic potential func-
tions may be assumed linear. Also, the interfaces between the
piezoelectric layer and the magnetostrictive layer are duly
grounded. Consequently, the electric potential functions for the
top piezoelectric layer ,t( )f the bottom piezoelectric layer b( )f
and the magnetic potential distribution field in the middle
magnetostrictive layer ( )y of the composite substrate can be
expressed respectively as follows:

z z

h

z h

h

z h

h
, and , 13t b1

1
2

2
2¯ ¯ ¯ ( )f f f f y y=

-
= -

-
=

-

where, z1 and h2 are the bottom surface of the top piezoelectric
layer and the top surface of the bottom piezoelectric layer of the
substrate along the z-coordinate, respectively; 1f and 2f are
electric potentials on the top and the bottom surface of the
piezoelectric layer while y is the magnetic potential on the top
surface of the magnetostrictive layer. The thickness of each
layer of the substrate is h. It should also be noted that
equations (9)–(13) can be augmented for the F/B/F stacking

4

Smart Mater. Struct. 26 (2017) 125021 S C Kattimani



sequence of the MEE plate by reinstating the top and the bottom
ferroelectric layers with the ferromagnetic layers, while the
middle layer is ferroelectric.

3. Finite element formulation

The overall substrate plate integrated with the ACLD patches
is discretized by eight noded iso-parametric quadrilateral
elements. The size of the mesh for computing the numerical
results is considered as 4×4. This results in the total number
of translational degrees of freedom as 195 while the total
number of rotational degrees of freedom is 520. The gen-
eralized displacement vectors dti{ } and dri{ } associated with
the ith (i=1, 2, 3, K, 8) node of the quadrilateral element
can be written as

d u v w

d
and

, 14
ti i i i

T

ri xi yi zi xi

yi zi xi yi
T

0 0 0{ } [ ]
{ } [

]
( )q q q f
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=
=

where, the subscript t and r represent the translational and
rotational, respectively. The nodal generalized displacement
vectors ( dt

e{ } and dr
e{ }), the nodal electric potential vector

e{ }f and the nodal magnetic potential vector e{ }y at any point
within the element can be written as

d N d d N d
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The various terms appearing in equation (15) are explicitly
presented in appendix A. Using equations (12)–(15), the
transverse electric fields E ,z

t Ez
b and the transverse magnetic

field Hz can be expressed as

E
h

N

E
h

N

H
h

N

1
1 0 ,

1
0 1 and

1
. 16

z
t e

z
b e

z
e

[ ][ ]{ }

[ ][ ]{ }

[ ]{ } ( )

f

f

y

= -

= -

= -

f

f

y

Now, using the kinematic strain-displacement relations [44]
and equation (13), the strain vectors at any point within the
element can be obtained in terms of the nodal generalized
displacement vectors [44]. Substituting the nodal generalized
displacement vectors into equations (9)–(11), and recognizing
that Q V

h1 33
1e=f and Q V

h2 33
2e=f with V1 and V2 being the

applied voltages across the thickness of the top and the bot-
tom ferroelectric layers of the substrate plate, the first varia-
tion of the total potential energy of the typical element

combined with the ACLD treatment can be written as follows:
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The first variation of the kinetic energy of the element can be
written as

T d M d . 18k
e
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t
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In equations (17) and (18), [Me] is the elemental mass matrix;
K ,tt

e[ ] Ktr
e[ ] and Krr

e[ ] are the elemental elastic stiffness matri-
ces; K ,t

e[ ]f Kr
e[ ]f and K ,t

e[ ]y Kr
e[ ]y are the elemental electro-

elastic and the elemental magneto-elastic coupling stiffness
matrices, respectively; K e[ ]ff and K e[ ]yy are the elemental
electrical and magnetic stiffness matrices, respectively; F ,tp

e{ }
F ,rp

e{ } F ,t
e{ } Fe{ }f and Fe{ }y are the elemental electro-elastic

coupling load vectors, mechanical load vector, electrical load
vector and the elemental magnetic load vector, respectively.
The applied voltage across the thickness of the 1–3 PZC layer
is represented by V. It may be noted that the substrate con-
sidered here is very thin. Therefore, the rotary inertia has been
ignored for the estimation of the kinetic energy of the ele-
ment. Applying Hamilton’s variational principle given by
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The elemental equations of motion for the overall plate are
derived and assembled to obtain the coupled global equations
of motion as follows:
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The global electro-elastic coupling vectors Ftp
j{ } and Frp

j{ } in
equation (20) becomes null vectors for the elements without
integrated with the ACLD treatment and the stiffness matrices
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will be real. The mass matrix [M] and various stiffness
matrices [Kii] appearing in equation (20) without superscript e
represent the global mass matrix and global stiffness matrices,
respectively. {F}, F F V F V1 1 2 2({ } { } { } )= +f f f and F{ }y are
the global nodal mechanical load vector, the global nodal
electrical load vector and the global nodal magnetic load vector,
respectively, {X}, {Xr}, {f} and {ψ} are the global generalized
nodal displacement vectors, electrical potential, and magnetic
potential vectors, respectively. The number of ACLD patches is
q and Vj is the applied voltage to the jth ACLD patch. It is
interesting to know that the coupled global equations derived
above also govern the passive (uncontrolled) constrained layer
damping (PCLD) in the absence of the applied control voltage.
Further, the global stiffness matrices for an element attached to
the ACLD treatment will be complex and hence the energy
dissipation characteristics of the overall MEE plate are attrib-
uted to the imaginary part of these matrices.

4. Closed loop model

A simple derivative control law has been utilized to supply
the control voltage V j for the constraining piezoelectric layer
of each ACLD patch. Thus, the supply control voltage for
each patch can be written in the form of derivatives of the
global nodal degrees of freedom as follows:

V K w K U X . 21j
d
j

o d
j

t
j[ ]{ } ( ) = - = -

Similarly, the control voltages for the top and the bottom
piezoelectric layers of the substrate plate can be written as
follows:

V K w K U X

V K w K U X

and

, 22
d o d

d o d

1 1 1 1

2 2 2 2

[ ]{ }
[ ]{ } ( )

 

 
= - = -
= - = -

where, Kd1 and Kd2 are the control gains of the jth ACLD
patch, the top piezoelectric layer and the bottom piezoelectric
layer of the MEE plate, respectively. U ,t

j[ ] [U1] and [U2] are
the unit vectors at a particular point to express the transverse
velocity in terms of the time derivative of the global nodal
generalized translational displacements. On substitution of
equations (21) and (22) into equation (20), the final coupled
governing equations of motion for the closed loop dynamics
of the multiferroic MEE plate integrated with the ACLD
patches can be expressed as follows:
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The global nodal rotational degrees of freedom, the global
nodal electric potential degrees of freedom and the global

nodal magnetic potential degrees of freedom can be con-
densed to obtain the global equations of motion in terms of
the global translational degrees of freedom only as follows:

M X F K U K F

K U K F K U X

K X F , 24

j

q

p
j

d
j j

a

d a d

1
1

1 1 2 2 2

⎛
⎝
⎜⎜[ ]{ ̈} { } [ ] [ ]{ }

[ ] [ ]{ } [ ]){ }
[ ]{ } { } ( )



å+ +

´ +
+ =

f f

f f

=

where the global augmented matrices are as follows:
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Assuming that the overall plate undergoes harmonic motion,
the solution of {X} and the load vector {F} can be considered
as

X X F Fe and e 26t ti i{ } { } { } { } ( )= =w w

in which X{ } and F{ } are the amplitudes of the displacements
and the forcing function, respectively and ω is the frequency
of excitation. Using equation (26), equation (25) can be
expressed in the impedance form for computing the frequency
response functions as follows:
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Further, in order to study the frequency dependence of vis-
coelastic material, the Golla–Hughes–McTavish (GHM)
model has been considered in the present analysis. The mat-
erial modulus function sG s˜ ( ) in the present study is expressed
by a single mini-oscillator term [52] as follows:

sG s G
s s

s s
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2

2
29

2

2 2
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¥

in which, G¥ is the equilibrium value of the modulus i.e. the
final value of the relaxation G(t). Each mini-oscillator term
consisting of three positive constants α, ŵ and .x̂ These
constants influence the shape of the modulus function in the
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Table 1. Material properties of BaTiO3 and CoFe2O4 [29].

C11=C22 (109 N m−2)
C12

(109 N m−2)
C13=C23

(109 N m−2) C33 (10
9 N m−2) C44=C55 (109 N m−2) C66 (109 N m−2) ρ (kg m−3)

BaTiO3 166 77 78 162 43 44.5 5800
CoFe2O4 286 173 170.5 269.5 45.3 56.5 5300
BaTiO3 e31 = e32 (C m−2)−4.4 e33 (C/m2) 18.6 e24=e15

(C m−2) 11.6
ä11=ä22

(10−9 C2 N−1 m−2) 11.2
ä33 (10

−9 C2 N−1 m−2)
12.6

μ11=μ22 (10
−6 N s−2 C−2) 5 μ33 (10

−6 N
s2 C−2) 10

CoFe2O4 q31=q32 (N Am−1) 180.3 q33 (N Am−1)
699.7

q24=q15
(N Am−1) 550

ä11=ä22

(10−9 C2 N−1 m−2) 0.08
ä33 (10

−9 C2 N−1 m−2)
0.093

μ11=μ22 (10
−6 N s−2 C−2)−590 μ33 (10

−6 N
s2 C−2) 157
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complex s-domain. Further, introducing the auxiliary dis-
sipation coordinates Z and Zr as follows:
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Making use of the Laplace transformations, and simplifying
equations (27)–(31) to obtain the global equation of motion as
follows:
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5. Results and discussions

The finite element formulation derived in the earlier section is
used to compute the frequency responses of the multiferroic
composite (MEE) plates attached with the ACLD treatment.
Two ACLD patches are placed on the top surface of the top
layer of the substrate plate as illustrated in figure 1. The num-
erical results are estimated for the MEE plate by activating/
deactivating the ACLD patches by means of supply control
voltage. The sizes of the patches are selected according to the
size of the substrate plate as the width and the length of the
patches are 25% and 50% of the width and length the of
the substrate plate, respectively. The material of the piezoelectric
layer of the ACLD patches is spur epoxy/PZT-5H composite
with 60% piezoelectric fiber volume fraction. The properties of
this constraining piezoelectric layer are considered from litera-
ture [20]. The thicknesses of the viscoelastic layer and the
constraining 1–3 PZC layer are considered to be 50.8μm and
250 μm, respectively. The material properties of the piezo-
electric and magnetostrictive layers of the MEE plates are listed
in table 1. Unless otherwise mentioned, the square plate of
length a and width b are taken as 0.5 m while thickness H is
considered as 0.003m with three layers of equal thickness

h=0.001m. The generally used stacking sequence B/F/B and
F/B/F are considered in the present analysis. The values of the
complex shear modulus, the Poisson’s ratio and the density of
the constrained viscoelastic layer are used as 20(1+i)MNm−2,
0.49 and 1140 Kgm−3, respectively [20]. The boundary condi-
tions for the MEE plates employed are as follows:

For simply supported

x a v wAt 0 and ; 0y y y z z0 0 q f g q f= = = = = = = =

y b u wAt 0 and ; 0.x x x z z0 0 q f g q f= = = = = = = =

For clamped-clamped

x a y b u v wAt 0 and ; 0 and ;
0

x

y x y y z z

0 0 0 q
q f f g q f
= = = = =

= = = = = = =

In all cases the electric and magnetic potentials at the
boundaries are assumed to be zero. A time-harmonic point
force of magnitude 1 N is applied at the point (a/2, b/4, H/2)
to excite the first few modes of the MEE plate. The open-loop
and the closed-loop responses of the MEE plate have been
examined by the frequency response functions for the trans-
verse displacement at the point (a/2, b/4, H/2). The control
voltages supplied to the patch 1 and the patch 2 are negatively
proportional to the velocities of the points (a/2, b/4, H/2)
and (a/2, 3b/4, H/2), respectively. Within the acceptable
control voltage, the arbitrary value of control gains are
selected for the acceptable control of first few vibrating modes
of the MEE plate. Unless otherwise stated, the controlled
responses are computed for the piezoelectric fiber orientation
λ=0° in the 1–3 PZC (Vertically reinforced 1–3 PZC). The
FE formulation derived here can be used for studying the
purely elastic/piezoelectric/piezomagnetic laminated com-
posite plate by changing the layers of the MEE plate with the
conventional composite/piezoelectric/piezomagnetic layers.
Consequently, to facilitate validation of the present FE for-
mulation, the fundamental natural frequencies of homo-
geneous purely elastic laminated composite plates with the
inactive ACLD patches of trivial thickness are calculated and
compared with analytical results available in the literature for

Figure 2. Comparison of natural frequencies of simply supported
MEE plate integrated with inactive ACLD patches of negligible
thickness with those of identical MEE plate [33].
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the same laminated composite plates [50]. Table 2 demon-
strates this comparison of fundamental natural frequency
parameters for different aspect ratios. It may be observed that
the two sets of results are in very good agreement. A further
validation is carried out with the existing solutions available
in the literature [33] for the identical MEE plates with inac-
tivated ACLD patches of negligible thickness. A square plate
of sides a=b=1 m and the thickness H=0.3 m studied by
Moita et al [33] is considered here for this validation. Figure 2
illustrates this comparison of some of the lowest natural fre-
quencies of MEE plates for the B/F/B and the F/B/F
stacking sequences while table 3 demonstrates the same in
numerical values. It may be observed from this figure that the
present results are in very good agreement with those reported
in [33] for both the stacking sequences of the MEE plates.
However, as expected, it has been noticed that the funda-
mental natural frequencies obtained by the present analysis
are slightly lower than the fundamental frequencies obtained
in [33]. This is attributed to the consideration of transverse
normal strain εz in the present model which is neglected
in [33].

It is now imperative to examine if the MEE plate can be
controlled without using the ACLD patches. Hence, first, the
MEE plate with B/F/B stacking sequence has been analyzed
with inactivated ACLD patches of negligible thickness by
providing the control voltage directly across the thickness of
the top and the bottom ferroelectric layers whereas, for the
plate with F/B/F stacking sequence, the control voltage is
applied across the middle ferroelectric layer. For the B/F/B
plate, the control voltages supplied to the ferroelectric layers
are negatively proportional to the velocities of the points (a/
2, b/4, H/2) and (a/2, b/4, -H/2) of the top and the bottom
ferroelectric layers, respectively. In case of the F/B/F
stacking sequence, the velocity of the point (a/2, b/4, h/2) is
fed back for applying the control voltage across the middle
ferroelectric layer. The arbitrary values of control gains have
been selected for controlling the first few modes of vibrations
of the MEE plates. Figures 3 and 4 illustrate the uncontrolled
(Kd= Kd1=Kd2=0) and controlled frequency response
functions of simply supported and clamped-clamped B/F/B
plates, respectively, with inactive (Kd=0) ACLD patches of
negligible thickness. Further, it is also noticed that the second
mode of vibration cannot be controlled by activating the top
(Kd1=300, Kd2=Kd= 0) or the bottom (Kd2=300,
Kd1=Kd=0) piezoelectric layer of the B/F/B MEE plate.
It is also noticed that if both the piezoelectric layers are
simultaneously activated, the substrate is not controlled as
shown in figure 5. In case of the F/B/F configuration,
figure 6 illustrates that the active middle piezoelectric layer

cannot control the MEE plate. Figures 7 and 8 illustrate the
frequency response functions for the simply supported plates
when the constraining layer of the ACLD patches are passive
(PCLD) and active while figures 9 and 10 demonstrate the
same for the clamped-clamped multiferroic composite plates.
It can be observed from these figures that the active

Table 2. Comparison of fundamental natural frequency parameter
a H E ,T

2¯ ( )/ /w w r= ω is the circular frequency.

Source a/H=10 a/H=100

Present FE soln. 12.498 15.217
Reddy [51] 12.223 15.185

Figure 3. Frequency response functions for the transverse displace-
ment w(a/2, b/4, H/2) of a simply supported B/F/B MEE plate
integrated with inactive ACLD patches of negligible thickness.

Figure 4. Frequency response functions for the transverse displace-
ment w(a/2, b/4, H/2) of a clamped-clamped B/F/B MEE plate
integrated with inactive ACLD patches of negligible thickness.

Table 3. Comparison of natural frequencies (rad s−1) of MEE plate
obtained in the present analysis with the result of Moita et al [33].

B/F/B F/B/F

Mode Present
Reference

[33] Present
Reference

[33]

1 12977.23 13024.78 14390.51 15043.32
2 24477.05 25401.26 26420.411 27880.80
3 26337.85 26256.34 28257.37 28795.37
4 34723.05 35206.62 37477.55 37753.16
5 38880.38 38671.99 41980.56 41649.71
6 38880.38 38671.99 41980.56 41649.71
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constraining layer of the vertically reinforced 1–3 PZC layer
(λ=0°) significantly improves the damping characteristics
of the multiferroic plates and the active ACLD patches con-
trol all the modes considered. With the intention that the other
researchers may verify their models, hence the first three

Figure 5. Frequency response functions for the transverse displace-
ment w(a/2, b/4, H/2) of a simply supported B/F/B MEE plate
integrated with inactive ACLD patches of negligible thickness.

Figure 6. Frequency response functions for the transverse displace-
ment w(a/2, b/4, H/2) of a simply supported F/B/F MEE plate
integrated with inactive ACLD patches of negligible thickness.

Figure 7. Frequency response functions for the transverse displace-
ment w(a/2, b/4, H/2) of a simply supported B/F/B MEE plate
using activated ACLD patches.

Figure 8. Frequency response functions for the transverse displace-
ment w(a/2, b/4, H/2) of a simply supported F/B/F MEE plate
using activated ACLD patches.

Figure 9. Frequency response functions for the transverse displace-
ment w(a/2, b/4, H/2) of a clamped-clamped B/F/B MEE plate
using activated ACLD patches.

Figure 10. Frequency response functions for the transverse
displacement w(a/2, b/4, H/2) of a clamped-clamped F/B/F MEE
plate using activated ACLD patches.
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frequency parameters a Cmax max/w w r=* (Cmax being the
maximum of the Cij in the whole sandwich plate [23]) of the
simply supported as well as clamped-clamped MEE plates of
different aspect ratios (a/H=10, 50 and 100) are presented
in table 4. Figures 11 and 12 illustrate the comparison of
frequency response functions for the transverse displacement
and the control voltage, respectively, for the active damping
of a simply supported B/F/B MEE plate with (Kd≠ 0,

Kd1=Kd2=0) and without (Kd=0, Kd1≠0 or Kd2≠0)
activating the ACLD patches. It may be observed from these
figures that the control voltage and the transverse displace-
ment are almost equal in both the cases corresponding to the
first mode while the second mode has not been controlled, if
the piezoelectric layers of the plate are directly activated
(Kd=0, Kd1≠0 or Kd2≠0). Figures 13 and 14 illustrate
the same for the clamped-clamped MEE plate. It can be
noticed from these figures that considerably high voltage is

Figure 11. Comparison of active damping of the simply supported
B/F/B MEE plate without the use of the ACLD patches with that of
the same using ACLD patches.

Figure 12. Comparison of the control voltage for active damping of
the simply supported B/F/B MEE plate without the use of the
ACLD patches with that of the same using ACLD patches.

Table 4. Frequency parameters of magneto-electro-elastic plate (H=0.003 m).

SS-1 B/F/B F/B/F

Mode a/H=10 a/H=50 a/H=100 a/H=10 a/H=50 a/H=100

1 0.379 0.079 0.040 0.426 0.090 0.046
2 0.896 0.207 0.114 0.998 0.236 0.128
3 0.938 0.217 0.119 1.042 0.246 0.134
C–C
1 0.683 0.195 0.139 0.771 0.216 0.149
2 1.309 0.489 0.387 1.444 0.533 0.408
3 1.355 0.497 0.392 1.495 0.542 0.414

Figure 13. Comparison of active damping of the clamped-clamped
B/F/B MEE plate without using the ACLD patches with that of the
same using ACLD patches.

Figure 14. Comparison of the control voltage for active damping of
the clamped-clamped B/F/B MEE plate without the use of the
ACLD patches with that of the same using ACLD patches.
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required to control the first mode of vibration of the MEE
plate, if the piezoelectric layers of the plate are directly acti-
vated (Kd=0, Kd1≠0 or Kd2≠0) as compared to the
control voltage required using the active ACLD patches
(Kd≠0, Kd1=Kd2=0). Thus, for the optimum control of
MEE plates, ACLD patches are essentially required to control
first few important modes of vibrations of MEE plates with
the usage of very low control voltage. Figures 15–18 illustrate
the effect of variation of the fiber orientation angle (λ) in the
piezoelectric layer of the ACLD patches on the frequency
response functions of simply supported smart MEE plates
(a=b=0.5 m, Kd=800). The numerical values of con-
trolled amplitudes of clamped-clamped MEE plate are tabu-
lated in table 5 for better interpretation. It may be noticed that
the best control of these plates is achieved by the vertically
reinforced 1–3 PZC layer (λ=0°). It may also be observed
from these figures that the performance of obliquely rein-
forced 1–3 PZC constraining layer in which the piezoelectric
fibers are coplanar with the yz-plane is better than that of the

obliquely reinforced 1–3 PZC constraining layer wherein, the
piezoelectric fibers are coplanar with the xz-plane.

The effects of ferro-elastic or electro-elastic and the
magneto-elastic couplings may be excluded by setting the
stiffness matrices [Ktf], [Kff], [Ktψ] and [Kψψ] to null
matrices. As a result, the responses of the multiferroic com-
posite plate will be free from these coupling effects.
Figures 19 and 20 illustrate the influence of the ferro-elastic
and the magneto-elastic coupling on the controlled, coupled,
and uncoupled responses of a simply supported B/F/B plates
when the ACLD patches are inactive (Kd=0, Kd1≠0 or
Kd2≠0) and active (Kd≠0, Kd1=Kd2=0), respectively.
Table 6 demonstrates these results in numerical values for the
first two natural frequencies. It be observed from these figures
and from the table 6 that the ferro-elastic and magneto-elastic
couplings cause a marginal increase in stiffening of the
multiferroic plate. Further, higher attenuation of the funda-
mental mode of vibration is noticed when the MEE plate is
controlled by the ACLD patches. In addition, the frequency

Figure 15. Effect of variation of piezoelectric fiber orientation angle
(λ) in xz-plane on the controlled response of a simply supported B/
F/B MEE plate (Kd=800).

Figure 16. Effect of variation of piezoelectric fiber orientation angle
(λ) in yz-plane on the controlled response of a simply supported B/
F/B MEE plate (Kd=800).

Figure 17. Effect of variation of piezoelectric fiber orientation angle
(λ) in xz-plane on the controlled response of a simply supported F/
B/F MEE plate (Kd=800).

Figure 18. Effect of variation of piezoelectric fiber orientation angle
(λ) in yz-plane on the controlled response of a simply supported F/
B/F MEE plate (Kd = 800).
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dependence of viscoelastic material has also been studied
briefly by using GHM method. In a single term GHM
expression, the values of the constants α, x̂ and ŵ are used as
11.42, 20 and 1.0261×105, respectively [53]. The shear
modulus G( )¥ and the density of the viscoelastic material v( )r

are used as 1.822×106 Pa and 1140 kg m−3, respectively
[53]. To check the correctness of implementation of GHM
method for modeling the viscoelastic materials, the linear
frequency response for the transverse displacement of the
multiferroic/MEE plate is computed separately using the
conventional complex modulus approach and compared with
the results of the GHM method. The First few modes of the
plate at the point (a/2, b/2, H/2) are excited by applying a
time harmonic load of 1 N. The frequency response functions
obtained by the GHM method as well as by the standard
complex modulus approach for a multiferroic composite plate
with B/F/B stacking sequence has been illustrated in
figure 21. It can be noticed from this figure that the frequency
response curves obtained by both the methods are almost
identical. As a result, the GHM method of modeling the
viscoelastic material accurately estimates the damping char-
acteristics plate. Figure 22 illustrates the comparison of linear
frequency responses using the GHM method for a simply
supported B/F/B plate. It can be observed from this figure
that the considerable influence of viscoelastic materials on the
frequency responses analogs to the piezoelectric layer of the
plate. Further, viscoelastic layer increases the overall damping
characteristics of the plate. As a result, control of transverse
amplitude of the plate has been noticed.

Table 5. Effect of piezoelectric fiber orientation angle (λ) on the controlled natural frequencies of clamped-clamped MEE plate.

Piezoelectric fiber orientation angle (λ) 0° 15° 30° 45°
Mode Frequencies w (m) w (m) w (m) w (m)

B/F/B xz-plane 1 527 4.76E-06 6.75E-06 1.60E-05 3.14E-05
2 1536 2.42E-06 3.65E-06 1.20E-05 8.24E-06
3 5957 1.20E-07 1.43E-07 1.84E-07 2.54E-07

yz-plane 1 527 4.76E-06 6.75E-06 1.32E-05 2.06E-05
2 1536 2.42E-06 3.65E-06 8.24E-06 7.57E-06
3 5957 1.20E-07 1.43E-07 1.86E-07 5.31E-07

F/B/F xz-plane 1 552 2.74E-06 6.55E-06 1.40E-05 9.08E-05
2 1597 1.44E-06 3.30E-06 7.19E-06 2.72E-05
3 6129 7.59E-08 1.88E-07 3.20E-07 1.19E-06

yz-plane 1 552 2.74E-06 3.51E-06 6.11E-06 4.69E-05
2 1597 1.44E-06 1.92E-06 3.58E-06 9.68E-06
3 6129 7.59E-08 8.83E-08 1.23E-07 3.45E-07

Figure 19. Effects of electro-elastic and magneto-elastic couplings
on the frequency response of simply supported B/F/B MEE plate
with inactive ACLD patches of negligible thickness.

Figure 20. Effects of electro-elastic and magneto-elastic couplings
on the frequency response of simply supported B/F/B MEE plate
controlled by activated ACLD patches.

Figure 21. Linear frequency responses using the GHM and Complex
modulus approach for a simply supported B/F/B-MEE plate.
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6. Conclusions

In this article, a layerwise shear deformation theory is used to
analyze the smart damping of multiferroic composite plates. A
finite element analysis of multiferroic/MEE plate attached with
the patches of ACLD treatment has been carried out. The ver-
tical actuation by the constraining layer of the patches is utilized
for active damping of smart multiferroic composite plate. The
best performance of the patches is achieved when the orientation
angle (λ) of the fibers is 0° for both simply supported and
clamped-clamped MEE plates. The electro-elastic and magneto-
elastic couplings cause a marginal increase in stiffening of the
multiferroic plates. These couplings improve the performance of
the ACLD patches for attenuating the fundamental mode of
vibration of the MEE plates. More importantly, the MEE plates
integrated with the inactivated ACLD patches of negligible
thickness (treating as without ACLD patches) have been ana-
lyzed by providing the control voltage directly across the
thickness of the piezoelectric layers of the substrate plate. It is
observed that even though the MEE plate is composed of smart
piezoelectric/ferroelectric layers, the second mode of the MEE
plate cannot be controlled by the activated piezoelectric layer
with B/F/B stacking sequence. Further, the F/B/F plate does
not show any response when activated by the piezoelectric layer.
Also, the attenuation of the first mode of vibration is more in
case of the ACLD of MEE plate than that in case of the control
of the MEE plate by activating its piezoelectric layer. Based on
the present study, it is suggested that the additional means for
incorporating smartness in the flexible structure such as the

ACLD patches are essentially required for the optimal control of
the MEE plates while the required control voltage is very low.

Appendix

The various nodal vectors and shape functions appearing in
equation (15) are
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where [Nt], [Nr], [Nf] and [Nψ] are the (3×24), (8×64),
(2×16) and (1×8) shape function matrices, respectively, It
and Ir are the (3×3) and the (8×8) identity matrices.

ORCID iDs

S C Kattimani https://orcid.org/0000-0002-2477-3783

References

[1] Bailey T and Hubbard J E 1985 Distributed piezoelectric
polymer active vibration control of a cantilever beam
J. Guid. Control Dyn. 8 605–11

[2] Crawley E F and Luis J D 1987 Use of piezoelectric actuators
as elements of intelligent structures AIAA J. 25 1371–85

[3] Baz A and Poh S 1988 Performance of an active control system
with piezoelectric actuators J. Sound Vib. 126 327–43

[4] Clark R L, Flemming M R and Fuller C R 1993 Piezoelectric
actuators for distributed excitation of thin plates: a comparison
between theory and experiment’ ASME J. Vib. Acoust. 115
332–9

[5] Reddy J N 1999 On laminate composite plates with integrated
sensors and actuators Eng. Struct. 21 568–93

[6] Baz A and Ro J 1996 Vibration control of plates with active
constrained layer damping Smart Mater. Struct. 5 272–80

[7] Park C H and Baz A 1999 Vibration control of bending modes
of plates using active constrained layer damping J. Sound
Vib. 227 711–34

[8] Baz A 1998 Robust control of active constrained layer
damping J. Sound Vib. 211 467–80

[9] Dong S and Tong L 2001 Vibration control of plates using
discretely distributed piezoelectric quasi-modal actuators/
sensors AIAA J. 39 1766–72

[10] Usik L and Joohong K 2001 Spectral element modelling for the
beams treated with active constrained layer damping Int. J.
Solids Struct. 38 5679–702

Table 6. Effect of coupled fields on the natural frequencies of the
MEE plate.

Mode Uncoupled fields Coupled fields
Frequency (ω) Frequency (ω)

BFB 1 110 114
2 358 366

FBF 1 108 112
2 340 348

Figure 22. Comparison of linear frequency responses using the
GHM method for a simply supported B/F/B MEE plate.

14

Smart Mater. Struct. 26 (2017) 125021 S C Kattimani

https://orcid.org/0000-0002-2477-3783
https://orcid.org/0000-0002-2477-3783
https://orcid.org/0000-0002-2477-3783
https://orcid.org/0000-0002-2477-3783
https://doi.org/10.2514/3.20029
https://doi.org/10.2514/3.20029
https://doi.org/10.2514/3.20029
https://doi.org/10.2514/3.9792
https://doi.org/10.2514/3.9792
https://doi.org/10.2514/3.9792
https://doi.org/10.1016/0022-460X(88)90245-3
https://doi.org/10.1016/0022-460X(88)90245-3
https://doi.org/10.1016/0022-460X(88)90245-3
https://doi.org/10.1115/1.2930353
https://doi.org/10.1115/1.2930353
https://doi.org/10.1115/1.2930353
https://doi.org/10.1115/1.2930353
https://doi.org/10.1016/S0141-0296(97)00212-5
https://doi.org/10.1016/S0141-0296(97)00212-5
https://doi.org/10.1016/S0141-0296(97)00212-5
https://doi.org/10.1088/0964-1726/5/3/005
https://doi.org/10.1088/0964-1726/5/3/005
https://doi.org/10.1088/0964-1726/5/3/005
https://doi.org/10.1006/jsvi.1999.2391
https://doi.org/10.1006/jsvi.1999.2391
https://doi.org/10.1006/jsvi.1999.2391
https://doi.org/10.1006/jsvi.1997.1315
https://doi.org/10.1006/jsvi.1997.1315
https://doi.org/10.1006/jsvi.1997.1315
https://doi.org/10.2514/2.1507
https://doi.org/10.2514/2.1507
https://doi.org/10.2514/2.1507
https://doi.org/10.1016/S0020-7683(00)00360-7
https://doi.org/10.1016/S0020-7683(00)00360-7
https://doi.org/10.1016/S0020-7683(00)00360-7


[11] Azvine B, Tomlinson G R and Wynne R J 1995 Use of active
constrained layer damping for controlling resonant Smart
Mater. Struct. 4 1–6

[12] Ray M C and Baz A 1997 Optimization of energy dissipation
of active constrained layer damping treatments of plates
J. Sound Vib. 208 391–406

[13] Ray M C, Oh J and Baz A 2001 Active constrained layer
damping of thin cylindrical shells J. Sound Vib. 240
921–35

[14] Ray M C and Mallik N 2004 Active control of laminated
composite beams using a piezoelectric fiber reinforced
composite layer Smart Mater. Struct. 13 146–52

[15] Ray M C and Reddy J N 2005 Active control of laminated
cylindrical shells using piezoelectric fiber reinforced
composites Compos. Sci. Technol. 65 1226–36

[16] Ray M C and Pradhan A K 2006 Performance of vertically
reinforced 1–3 piezoelectric composites for active damping
of smart structures Smart Mater. Struct. 15 631–41

[17] Ray M C and Pradhan A K 2007 On the use of vertically
reinforced 1–3 piezoelectric composites for hybrid damping
of laminated composite plates Mech. Adv. Mater. Struct. 14
245–61

[18] Illaire H and Kropp W 2005 Quantification of damping
mechanisms of active constrained layer treatments J. Sound
Vib. 281 189–217

[19] Kumar S R and Ray M C 2012 Active constrained layer
damping of smart laminated composite sandwich plates
using 1–3 piezoelectric composites’ Int. J. Mech. Mater.
Des. 8 197–218

[20] Chantalakhana C and Stanway R 2001 Active constrained layer
damping of clamped–clamped plate vibrations J. Sound Vib.
241 755–77

[21] Araújo A L, Martins P, Mota Soares C M,
Mota Soares C A and Herskovits J 2012 Damping
optimization of hybrid active–passive sandwich composite
structures Adv. Eng. Softw. 46 69–74

[22] Araújo A L, Madeira J F A, Mota Soares C M and
Mota Soares C A 2013 Optimal design for active damping in
sandwich structures using the Direct MultiSearch method
Compos. Struct. 105 29–34

[23] Pan E and Heyliger P R 2002 Free vibrations of simply
supported and multilayered magneto-electro-elastic plates
J. Sound Vib. 252 429–42

[24] Heyliger P R and Pan E 2004 Static fields inmagneto-electro-
elastic laminates AIAA J. 42 1435–43

[25] Liu M F and Chang T P 2010 Closed form expression for the
vibration problem of a transversely isotropic magneto-
electro-elastic plate J. Appl. Mech. 77 1–8

[26] Ramirez F, Heyliger P R and Pan E 2006 Discrete layer
solution to free vibrations of functionally graded magneto-
electro-elastic plates Mech. Adv. Mater. Struct. 13 249–66

[27] Buchanan G R 2004 Layered versus multiphase magneto-
electro-elastic composites Composites B 35 413–20

[28] Garcia Lage R, Mota Soares C M, Mota Soares C A and
Reddy J N 2004 Layerwise partial mixed finite element
analysis of magneto-electro-elastic plates Comput. Struct.
82 1293–301

[29] Pan E 2001 Exact solution for simply supported and
multilayered magneto-electro- elastic plates ASME Trans.
68 608–18

[30] Pan E and Han F 2005 Exact solution for functionally graded
and layered magneto-electro-elastic plates Int. J. Eng. Sci. 43
321–39

[31] Wang J G, Chen L F and Fang S S 2003 State vector approach
to analysis of multilayered magneto-electro-elastic plates Int.
J. Solids Struct. 40 1669–80

[32] Wang J, Lei Q and Feng Q 2010 State vector approach of free-
vibration analysis of magneto-electro-elastic hybrid
laminated plates Compos. Struct. 92 1318–24

[33] Moita J M S, Mota Soares C M and Mota Soares C A 2009
Analysis of magneto-electro-elastic plates using higher order
finite element model Compos. Struct. 91 421–6

[34] Chen W Q, Lee K Y and Ding H J 2005 On free vibration of
non-homogeneous transversely isotropic magneto-electro-
elastic plates J. Sound Vib. 279 237–51

[35] Bhangale R K and Ganesan N 2006 Free vibration of simply
supported functionally graded and layered magneto-electro-
elastic plates J. Sound Vib. 294 1016–38

[36] Bhangale R K and Ganesan N 2005 Free vibration studies of
simply supported non-homogeneous functionally graded
magneto-electro-elastic finite cylindrical shells J. Sound Vib.
288 412–22

[37] Chen J, Chen H and Pan E 2006 Free vibration of functionally
graded, magneto-electro-elastic and multilayered plates Acta
Mech. Solida Sin. 19 160–6

[38] Guo J, Chen J and Pan E 2016 Static deformation of
anisotropic layeredmagneto-electro-elastic plates based on
modified couple-stress theory Composites B 107 84–96

[39] Xin L and Hu Z 2015 Free vibration of simply supported and
multilayered magneto-electro-elastic plates Compos. Struct.
121 344–50

[40] Shooshtari A and Razavi S 2016 Vibration analysis of amagneto-
electro-elastic rectangular plate based on a higher-order shear
deformation theory Latin Am. J. Solids Struct. 13 554–72

[41] Shooshtari A and Razavi S 2015a Nonlinear vibration analysis
of rectangular magneto-electro-elastic thin plates IJE Trans.
A 28 136–44

[42] Shooshtari A and Razavi S 2015b Linear and nonlinear free
vibration of multilayered magneto-electro-elastic doubly
curved shells on elastic foundation Composites B 78 95–108

[43] Razavi S and Shooshtari A 2015 Nonlinear free vibration of
magneto-electro-elastic rectangular plates Compos. Struct.
119 377–84

[44] Kattimani S C and Ray M C 2014 Smart damping of
geometrically nonlinear vibrations of magneto-electro-
elastic plates Compos. Struct. 114 51–63

[45] Kattimani S C and Ray M C 2014 Active control of large
amplitude vibrations of smart magneto-electro-elastic
doubly curved shells Int. J. Mech. Mater. Des. 10 351–78

[46] Kattimani S C and Ray M C 2015 Control of geometrically
nonlinear vibrations of functionally graded Magneto-electro-
elastic plates Int. J. Mech. Sci. 99 154–67

[47] Kattimani S C 2015 Active Control of Geometrically Nonlinear
Vibrations of Magneto-electro-elastic Plates and Shells (IIT,
Kharagpur, 2015-04) http://idr.iitkgp.ac.in/xmlui/handle/
123456789/5535

[48] Milazzo A 2014 Refined equivalent single layer formulations and
finite elements for smart laminates free vibrations Composites
B 61 238–53

[49] Milazzo A 2014 Large deflection of magneto-electro-elastic
laminated plates Appl. Math. Modelling 38 1737–52

[50] Farajpour A, Hari Yzdi M R, Ratgoo A, Loghmani M and
Mohammadi M 2016 Nonlocal nonlinear plate model for
large amplitude vibration of magneto-electro-elastic
nanoplates Compos. Struct. 140 323–36

[51] Reddy J N 1996 Mechanics of Laminated Composite Plates and
Shells, Theory and Analysis (Boca Raton, FL: CRC Press)

[52] Mc Tavish D J and Hughes P C 1993 Modelling of linear
viscoelastic space structures J. Vib. Acoust. 115 103–13

[53] Lim Y-H, Varadan V V and Varadan K V 2002 Closed loop
finite element modeling of active constrained layer damping
in the time domain analysis Smart Mater. Struct. 11 89–97

15

Smart Mater. Struct. 26 (2017) 125021 S C Kattimani

https://doi.org/10.1088/0964-1726/4/1/001
https://doi.org/10.1088/0964-1726/4/1/001
https://doi.org/10.1088/0964-1726/4/1/001
https://doi.org/10.1006/jsvi.1997.1171
https://doi.org/10.1006/jsvi.1997.1171
https://doi.org/10.1006/jsvi.1997.1171
https://doi.org/10.1006/jsvi.2000.3287
https://doi.org/10.1006/jsvi.2000.3287
https://doi.org/10.1006/jsvi.2000.3287
https://doi.org/10.1006/jsvi.2000.3287
https://doi.org/10.1088/0964-1726/13/1/016
https://doi.org/10.1088/0964-1726/13/1/016
https://doi.org/10.1088/0964-1726/13/1/016
https://doi.org/10.1016/j.compscitech.2004.12.027
https://doi.org/10.1016/j.compscitech.2004.12.027
https://doi.org/10.1016/j.compscitech.2004.12.027
https://doi.org/10.1088/0964-1726/15/2/047
https://doi.org/10.1088/0964-1726/15/2/047
https://doi.org/10.1088/0964-1726/15/2/047
https://doi.org/10.1080/15376490600795683
https://doi.org/10.1080/15376490600795683
https://doi.org/10.1080/15376490600795683
https://doi.org/10.1080/15376490600795683
https://doi.org/10.1016/j.jsv.2004.01.032
https://doi.org/10.1016/j.jsv.2004.01.032
https://doi.org/10.1016/j.jsv.2004.01.032
https://doi.org/10.1007/s10999-012-9186-6
https://doi.org/10.1007/s10999-012-9186-6
https://doi.org/10.1007/s10999-012-9186-6
https://doi.org/10.1006/jsvi.2000.3317
https://doi.org/10.1006/jsvi.2000.3317
https://doi.org/10.1006/jsvi.2000.3317
https://doi.org/10.1016/j.advengsoft.2010.09.007
https://doi.org/10.1016/j.advengsoft.2010.09.007
https://doi.org/10.1016/j.advengsoft.2010.09.007
https://doi.org/10.1016/j.compstruct.2013.04.044
https://doi.org/10.1016/j.compstruct.2013.04.044
https://doi.org/10.1016/j.compstruct.2013.04.044
https://doi.org/10.1006/jsvi.2001.3693
https://doi.org/10.1006/jsvi.2001.3693
https://doi.org/10.1006/jsvi.2001.3693
https://doi.org/10.2514/1.9949
https://doi.org/10.2514/1.9949
https://doi.org/10.2514/1.9949
https://doi.org/10.1115/1.3176996
https://doi.org/10.1115/1.3176996
https://doi.org/10.1115/1.3176996
https://doi.org/10.1080/15376490600582750
https://doi.org/10.1080/15376490600582750
https://doi.org/10.1080/15376490600582750
https://doi.org/10.1016/j.compositesb.2003.12.002
https://doi.org/10.1016/j.compositesb.2003.12.002
https://doi.org/10.1016/j.compositesb.2003.12.002
https://doi.org/10.1016/j.compstruc.2004.03.026
https://doi.org/10.1016/j.compstruc.2004.03.026
https://doi.org/10.1016/j.compstruc.2004.03.026
https://doi.org/10.1115/1.1380385
https://doi.org/10.1115/1.1380385
https://doi.org/10.1115/1.1380385
https://doi.org/10.1016/j.ijengsci.2004.09.006
https://doi.org/10.1016/j.ijengsci.2004.09.006
https://doi.org/10.1016/j.ijengsci.2004.09.006
https://doi.org/10.1016/j.ijengsci.2004.09.006
https://doi.org/10.1016/S0020-7683(03)00027-1
https://doi.org/10.1016/S0020-7683(03)00027-1
https://doi.org/10.1016/S0020-7683(03)00027-1
https://doi.org/10.1016/j.compstruct.2009.11.013
https://doi.org/10.1016/j.compstruct.2009.11.013
https://doi.org/10.1016/j.compstruct.2009.11.013
https://doi.org/10.1016/j.compstruct.2009.04.007
https://doi.org/10.1016/j.compstruct.2009.04.007
https://doi.org/10.1016/j.compstruct.2009.04.007
https://doi.org/10.1016/j.jsv.2003.10.033
https://doi.org/10.1016/j.jsv.2003.10.033
https://doi.org/10.1016/j.jsv.2003.10.033
https://doi.org/10.1016/j.jsv.2005.12.030
https://doi.org/10.1016/j.jsv.2005.12.030
https://doi.org/10.1016/j.jsv.2005.12.030
https://doi.org/10.1016/j.jsv.2005.04.008
https://doi.org/10.1016/j.jsv.2005.04.008
https://doi.org/10.1016/j.jsv.2005.04.008
https://doi.org/10.1007/s10338-006-0619-3
https://doi.org/10.1007/s10338-006-0619-3
https://doi.org/10.1007/s10338-006-0619-3
https://doi.org/10.1016/j.compositesb.2016.09.044
https://doi.org/10.1016/j.compositesb.2016.09.044
https://doi.org/10.1016/j.compositesb.2016.09.044
https://doi.org/10.1016/j.compstruct.2014.11.030
https://doi.org/10.1016/j.compstruct.2014.11.030
https://doi.org/10.1016/j.compstruct.2014.11.030
https://doi.org/10.1590/1679-78251831
https://doi.org/10.1590/1679-78251831
https://doi.org/10.1590/1679-78251831
https://doi.org/10.1016/j.compositesb.2015.03.070
https://doi.org/10.1016/j.compositesb.2015.03.070
https://doi.org/10.1016/j.compositesb.2015.03.070
https://doi.org/10.1016/j.compstruct.2014.08.034
https://doi.org/10.1016/j.compstruct.2014.08.034
https://doi.org/10.1016/j.compstruct.2014.08.034
https://doi.org/10.1016/j.compstruct.2014.03.050
https://doi.org/10.1016/j.compstruct.2014.03.050
https://doi.org/10.1016/j.compstruct.2014.03.050
https://doi.org/10.1007/s10999-014-9252-3
https://doi.org/10.1007/s10999-014-9252-3
https://doi.org/10.1007/s10999-014-9252-3
https://doi.org/10.1016/j.ijmecsci.2015.05.012
https://doi.org/10.1016/j.ijmecsci.2015.05.012
https://doi.org/10.1016/j.ijmecsci.2015.05.012
http://www.idr.iitkgp.ac.in/xmlui/handle/123456789/5535
http://www.idr.iitkgp.ac.in/xmlui/handle/123456789/5535
https://doi.org/10.1016/j.compositesb.2014.01.055
https://doi.org/10.1016/j.compositesb.2014.01.055
https://doi.org/10.1016/j.compositesb.2014.01.055
https://doi.org/10.1016/j.apm.2013.08.034
https://doi.org/10.1016/j.apm.2013.08.034
https://doi.org/10.1016/j.apm.2013.08.034
https://doi.org/10.1016/j.compstruct.2015.12.039
https://doi.org/10.1016/j.compstruct.2015.12.039
https://doi.org/10.1016/j.compstruct.2015.12.039
https://doi.org/10.1115/1.2930302
https://doi.org/10.1115/1.2930302
https://doi.org/10.1115/1.2930302
https://doi.org/10.1088/0964-1726/11/1/310
https://doi.org/10.1088/0964-1726/11/1/310
https://doi.org/10.1088/0964-1726/11/1/310

	1. Introduction
	2. Problem description and governing equations
	3. Finite element formulation
	4. Closed loop model
	5. Results and discussions
	6. Conclusions
	Appendix
	References



