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An iterative regularization method for ill-posed
Hammerstein type operator equation

S. George and M. Kunhanandan

Abstract. A combination of Newton’s method and a regularization method has been considered
for obtaining a stable approximate solution for ill-posed Hammerstein type operator equation. By
choosing the regularization parameter according to an adaptive scheme considered by Pereverzev
and Schock (2005) an order optimal error estimate has been obtained. Moreover the method that we
consider gives quadratic convergence compared to the linear convergence obtained by George and
Nair (2008).

Key words. Nonlinear ill-posed equations, Hammerstein type equations, iterative regularization,
adaptive choice.
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1. Introduction

Regularization methods used for obtaining approximate solution of nonlinear ill-posed
operator equation

Az =y, (1.1)

where A is a nonlinear operator with domain D(A) in a Hilbert space X, and with its
range R(A) in a Hilbert space Y, include Tikhonov regularization (see [6, 7, 17, 20, 22,
25]), Landweber iteration [15], iteratively regularized Gauss—Newton method [1] and
Marti’s method [16]. Here the equation (1.1) is ill-posed in the sense that the solution
of (1.1) does not depend continuously on the data y.

The optimality of these methods are usually obtained under a number of restrictive
conditions on the operator A (see for example assumptions (10)—(14) and (93)—(98)
in [23]). For the special case where A is a Hammerstein type operator, George [10,
11] and George and Nair [14] studied a new iterative regularization method and had
obtained optimality under weaker conditions on A (that are more easy to verify in
concrete problems).

Recall that a Hammerstein type operator is an operator of the form A = K F, where
F:D(F)C X — Zisnonlinear and K : Z — Y is a bounded linear operator where
we take X, Y, Z to be Hilbert spaces.

So we consider an equation of form

KF(z)=y. (1.2)
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832 S. George and M. Kunhanandan

In [14] George and Nair, studied a modified form of NLR method for obtaining
approximations for a solution £ € D(F') of (1.2), which satisfies

[1F(2) = F(zo)|| = min{||F(z) — F(xo)[| : KF(z) =y, = € D(F)}.  (1.3)

We assume throughout that the solution 7 satisfies (1.3) and that ¢® € Y are the avail-
able noisy data with
ly =y’ < 6. (1.4)

The method considered in [14] gives only linear convergence. This paper is an
attempt to obtain quadratic convergence.

Recall that a sequence (x,,) is X with limz,, = z* is said to be convergent of order
p > 1, if there exist positive reals 3, ~y, such that forall n € N

|n — 2% < Be " (1.5)
If the sequence (x,,) has the property that

then (x,,) is said to be linearly convergent. For an extensive discussion of convergence
rate see Kelley [18].

Organization of this paper is as follows. In Section 2, we introduce the iterated reg-
ularization method. In Section 3 we give error analysis and in section 4 we derive error
bounds under general source conditions by choosing the regularization parameter by an
a priori manner as well as by an adaptive scheme proposed by Pereverzev and Schock
in [21]. In Section 5 we consider the stopping rule and the algorithm for implementing
the iterated regularization method.

2. Iterated regularization method

Assume that the function F' in (1.2) satisfies the following:

1. F possesses a uniformly bounded Fréchet derivative F’(-) in a ball B,(x¢) of
radius r > 0 around zy € X, where z is an initial approximation for a solution & of
(1.2).

2. There exists a constant «( such that

I1F(2) = F'()|| < kol —yll,  Va,y € Br(z0). @D

3. F'(x)~! exists and is a bounded operator for all z € B,.(p).
Consider e.g., (cf. [23]) the nonlinear Hammerstein operator equation

1
(K Fa)(t) = /0 k(s, )h(s, 2(s))x(s) ds

with k continuous and h is differentiable with respect to the second variable. Here
F:D(F) = H']0,1]) — L*(]0, 1]) is given by

F(z)(s) = h(s,x(s)),  s€l01],
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An iterative regularization method 833

and K : L*(]0,1]) — L*(]0,1]) is given by

1
Ku(t) = / k(s tu(s)ds, e [0,1].
0
Then F is Fréchet differentiable and we have
[F'(2)]u(t) = oah(t, x(t))u(t), t e [0,1].

Assume that N : H'(]0, 1[) — H'(]0, 1) defined by (Nx)(t) := dxh(t,x(t)) is locally
Lipschitz continuous, i.e., for all bounded subsets U C H'! there exists rq := ko(U)
such that

10212, 2(-)) = O2h (-, y (D))l e < Kol — yl| 2.2)
for all z,3y € H'. Further if we assume that there exists ; such that
Dah(t, zo(t)) > K1 t €10,1], (2.3)
then by (2.2) and (2.3), there exists a neighborhood U () of o in H' such that
Ohh(t,x(t)) > Kk1/2

forallt € [0, 1] and for all z € U(zp). So F'(x)~! exists and is a bounded operator for
all z € U(xyo).
Observe that (cf. [14]) equation (1.2) is equivalent to

K[F(z) — F(z0)] =y — KF(x) (2.4
for a given x, so that the solution z of (1.2) is obtained by first solving
Kz=y— KF(x) (2.5)
for z and then solving the nonlinear equation
F(x) = z+ F(x0). (2.6)

For fixed a > 0, § > 0 we consider the regularized solution of (2.5) with ¢ in place
of y as
20 = (K +al)"'(y° — KF(x)) + F(0) 2.7)

if the operator K in (2.5) is positive self adjoint and Z = Y, otherwise we consider
20 = (K*K + ol )"'K*(y° — KF(x0)) + F (o). (2.8)

Note that (2.7) is the simplified or Lavrentiev regularization of equation (2.5) and (2.8)
is the Tikhonov regularization of (2.5).

Now for obtaining approximate solutions for the equation (1.2), for n € N we con-
sider xiya, defined iteratively as

xfz+1¢oz = xfm,a - F/(xi,a)_] (F(:I"(T;L,a) - Zi)v (29)

with x‘&a = 9.
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834 S. George and M. Kunhanandan

Note that the iteration (2.9) is the Newton’s method for the nonlinear problem

We shall make use of the adaptive parameter selection procedure suggested by
Pereverzev and Schock [21] for choosing the regularization parameter ¢, depending
on the inexact data ° and the error § satisfying (1.4).

We shall need the following lemma which can be found in [14].

Lemma 2.1. Let 0 < p < r and x,u € B,(x¢). Then
1" (x0) (& — 0) — [ () — F(wo)]|| < sollz — wo]*/2,

and
[1F"(z0)(z — u) — [F(z) — F(u)]|| < ropllz — ul.

3. Error analysis
For investigating the convergence of the iterate (xfw) defined in (2.9) to an element

2% € B,(z0) we introduce the following notations: Let forn = 1,2,3,.. .,

B = F'(2n0) s en =210 — 20l
Y = KoPnén, dp =37 (1 = ,) 71, (3.1
w:= ||F(2) = F(xo)|-
Further we assume that
Yo := Koeolbo < 1/4 3.2)

and
n:=2ey <. (3.3)

Theorem 3.1. Suppose that (2.1), (3.2) and (3.3) hold. Then z° _, defined in (2.9)

é
n,o

belongs to By (xo) and is a Cauchy sequence with lim, .. 5, , = x?, € By(xo) C
B, (o). Further we have the following:
ot o — bl <nd” /2" < e (34)
where 3 = n/dy and v = —log dj.
Proof. First we shall prove that
#7410 = #nall < (3/2)Barollan,0 = 2510l (3.5)

and then by induction we prove z?, , € B (x).
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An iterative regularization method 835

Gz) - Gly) =z —y— F'(x) '[F(z) - 23] + F'(y) "' [F(y) — 2]

y) = F'(@)]F'(y) "' (=0 = F(y))

+ F'(2) 7' (y) - F'(2)](Gy) — ). (3.6)

)

5y — .0
Now observe that G(zy, ) = =2, n,

we obtain

o> SO by putting z = a0, , andy = 20 _,  in (3.6),

n—

+1

meH,(x - ‘Ti,a = F/(xft,a)il[F/(fo,a)(zi,a - fo—l,(x) - (F(xfz,,a) - F(zg—l,a))]
+F (o) F (@ 10) = F(20,0)] (@00 —20-14). B.7)

n,o n,o

Thus by Lemma 2.1 and (2.1),

#0410 = 2ol < Bakollon,o = 20-1all?/24+ Burollan o — on-ral®. (38)
This proves (3.5). Again since
(

F'(a),0) = F

fofl,oz) + F/(mfha) - F/(ajflfl,a)
xi—l,(x)[l + F/<xg,—l,a)7l(F/(fo,a) - F/(‘Ti—l,a))}v (39)
F/(xa )71 = [I+ F/(xé—l,oz)il(Fl(xi,a) - Fl(xi—l,a))]71F/($5n—l,a)71' (310)

n,o n
So if

||F/(x§z—l,a)71(F/(fo,a) - F/(xi—l,a))” < Bn-1K0€n—1 = TYn—1 < 1,

then
6n < 6n—1(1 - ’Yn—l)il (311)
and by (3.5)
en < 36081 (1 —yn1)"'ep_1/2 (3.12)
=39 1(1 — Y1) leno1/2 (3.13)
=dp_1n—1/2. (3.14)
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836 S. George and M. Kunhanandan

Again by (3.11) and (3.13),

Yn = Hoenﬂn < (3/2>507n—1(1 - ’Yn—l)ilen—l 'ﬁn—l (1 - ’Yn—l)il
= (3/2) 71 (1 = 1) 2 (3.15)
The above relation together with vy = koepfo < 1/4 implies v,, < 1/4. Consequently

by (3.13),
en < en_1/2, (3.16)

foralln > 1. So e,, <2 ™ep, and hence

n

n
) ) ) —J
Hxn-ﬁ—],a - 3?()” < Z ||xj+1,(x - x]a” < Zz Jeo < 260 <

J=0 j=0
Thus (xfm) is well defined and is a Cauchy sequence with 5 = lim,, xfm €
B, (z0) C By(x0). So from (2.9), it follows that F(2%) = 2.
Further note that since 7,, < 1/4, and by (3.15) we have
dn = 3y, (1 - 'Yn)_l <Ay, <4- (3/2)%21—] (1- ’Yn—l)_z < di—l-
Hence
d, < dj", (3.17)
consequently, by (3.14), (3.16) and (3.17)
en <dp_1en_1/2 < 2_nd5n7160~
Therefore
||xfl,a - xfx” = 11{1’1 ||fo,(X - foJri,oz” < Z €5
j=n
> — 0i—1 _p pn! Zeodgnil
gZz dg eo <227y eo = 50— (3.18)
j=n
< nd(z)n_] = n e_,yzn < ﬁ e_—yzﬂ = ﬂe_'yzn
AL do2™ ~ dy '
This completes the proof. O

Remark 3.2. Note that v > 0 because v < 1/4 = dy < 1. So by (1.5), sequence
(29, ) converges quadratically to z,.

Theorem 3.3. Suppose that (2.1), (3.2) and (3.3) hold. If; in addition,
r < 1/(50,%0), then

:L'()*SEH <n<

Bo

NS
[2 — 25|l < 1= Gorr

e IF @) = 2.
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Proof. Observe that
12 = a3 |l = (12 — 2 + F'(a0) "' [F(2) — F(2) + F(2) — 23]
<[ F' (o)~ [F' (w0) (& — 23) — (F(2) — F(x2))]l
+[|F" (o) ' [F(2) — 22]
< Bokor||2 — 23 || + Gol| F(2) — 23.

Thus
(1 = Boror)||& — 23 || < Boll F(2) — 23 .

This completes the proof. O

Remark 3.4. If 20 is as in (2.8) and if
) T 1
F(xo) —F@)|+—=< 75 < 75—
then :
lzo =2 <np<r<—

Boko
holds (see Section 5).

The following theorem is a consequence of Theorem 3.1 and Theorem 3.3.
Theorem 3.5. Suppose that (2.1), (3.2) and (3.3) hold. If in addition Gyrgr < 1, then

znfl
N Bo . 5 ndy
o =l < T2 (e — )+ T

Remark 3.6. Hereafter we consider z9 as the Tikhonov regularization of (2.5) given
in (2.8). All results in the forthcoming sections are valid for the simplified regulariza-
tion of (2.5).

In view of the estimate in Theorem 3.5, the next task is to find an estimate
| F'(#) — 25||. For this, let us introduce the notation

Zo 1= F(z0) + (K*K + oI ) ' K*(y — KF(x0)).
We may observe that
IF(2) = 2oll S IF(2) = zall + 20 = 22|l < |F(2) = zall +6/Va,  (3.19)
and
F(2) — 2o = F(2) — F(x9) — (K*K + ol ) "' K*K[F (&) — F(x0)]
=[I — (K*K + ol ) ' K*K][F (%) — F(x0)]
= a(K*K + o) 7'[F(2) — F(x0)]. (3.20)
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Note that for v € R(K*K) with u = K* Kz for some z € Z,
la(K*K 4+ o) = |o(K*K + ol) ' K*Kz|| < afz|| — 0

as a — 0. Now since ||o(K*K + al)~!|| < 1 for all a > 0, it follows that for every

u € R(K*K), we have ||a(K*K + of)"'ul| — 0 as o — 0. Thus we achieve the
following theorem.

Theorem 3.7. If F(%) — F(zo) € R(K*K), then |F (%) — zo| — 0as a — 0.

4. Error bounds under source conditions
In view of the above theorem, we assume that
IP(2) = zall < ¢(a) @.1)
for some positive monotonic increasing function ¢ defined on (0, || K ||?] such that
li A)=0.
lim ¢ (A)

Suppose ¢ is a source function in the sense that Z satisfies a source condition of the
form
F(i) - F(.ro) = @(K*K)w7 Jw] <1,

such that

sup ap(N)

< p(a), (4.2)
o<a<||K|p AT

then the assumption (4.1) is satisfied. Note that if F'(£) — F(zo) € R((K*K)"), for
some v with, 0 < v < 1, then by (3.20)

IF(2) = 2ol < |la(K*K + o) (K*K)"w||
aN’

< sup
o<x<|Kp At a

lw]] < a”flwll.

Thus in this case (X)) = \”/||w|| satisfies the assumption (4.1). Therefore by (3.19)
and by the assumption (4.1), we have

IF(2) = 22| < o) + 6/ 4.3)

So, we have the following theorem.

Theorem 4.1. Under the assumptions of Theorem 3.5 and (4.3),

217.—]
b ot <P 9y,
I# = ahall < 7= (o) + =) + 5
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4.1. A priori choice of the parameter

Note that the estimate ¢(a) + §/+/c in (4.2) attains minimum for the choice o := ;s

which satisfies p(as) = 6/\/as. Let (A) := A/~ 1(N), 0 < XA < |[K||>. Then we
have § = \/asp(as) = ¥(p(as)), and

as =@ ' (Y~1(5)). (4.4
So the relation (4.3) leads to
IF(2) = 23]l < 297 (6)-
Theorem 4.1 and the above observation leads to the following.

Theorem 4.2. Let (\) := A\\/p~1()\), 0 < X < ||K||?, and the assumptions of Theo-
rem 3.5 and 4.1 be satisfied. For § > 0, let as = = (=1(0)). If

ns :=min{n:rdd /2" < &/\/as},

then
12 = a0, s Il = O (6)).

4.2. An adaptive choice of the parameter

The error estimate in the above Theorem has optimal order with respect to §. Unfortu-
nately, an a priori parameter choice (4.4) cannot be used in practice since the smooth-
ness properties of the unknown solution Z reflected in the function ¢ are generally
unknown. There exist many parameter choice strategies in the literature, for example
see [2, 8,9, 12, 13, 24, 26].

In [21], Pereverzev and Schock considered an adaptive selection of the parameter
which does not involve even the regularization method in an explicit manner. In this
method the regularization parameter «; are selected from some finite set {a; : 0 <
ap < aj < -+ < ay} and the corresponding regularized solution, say ug are studied
on-line. Later George and Nair [14] considered the adaptive selection of the parameter
for choosing the regularization parameter in Newton—Lavrentiev regularization method
for solving Hammerstein-type operator equation. In this paper also, we consider the
adaptive method for selecting the parameter « in xin Rest of this section is essentially
a reformulation of the adaptive method considered in [21] in a special context.

Leti € {0,1,2,..., N} and a; = pu* g where p > 1 and opp = 6°. Let

l:=max {i: ¢(a;) <d/v/ai} 4.5)
and
ki=max {i: |20, — 2 || <46//az, j=0,1,2,....i}. (4.6)

The proof of the next theorem is analogous to the proof of Theorem 1.2 in [21], but for
the sake of completeness, we supply its proof as well.
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Theorem 4.3. Let [ be as in (4.5), k be as in (4.6) and z(‘ik be as in (2.8) with o = «,.
Then |l < k and

4
1F(@) = 23,0l < (24 75 )™ 0).

Proof. Note that, to prove [ < k, it is enough to prove that, fori = 1,2,... N

0 46
o(ay) < = |2, -2 < . Vji=0,1,2,...,i
A/ O J \/@
For j <4,
120, — 20, < 128, — F(&)|| + |1 F(2) — 5_,||
< (o) + 0 +olay)+ < 20 n 20 < 46
- ‘ 673 I VO T\ NCTE ,/Ozj.

This proves the relation [ < k. Now since /a1, = p"\/aq, by using triangle in-
equality successively, we obtain

1F(2) = 20, Il < [|IF (2

Oll

jl+1V

k—I1—1

. B\ 40
<||F(&) = 25,11 + Z o < ||F(&) = 20,1 + (ﬁ)ﬁ

Therefore by (4.2) and (4.5) we have

1F(2) = 20, I < w(an) +

=t () 7 < G o)

The last step follows from the inequality (/a5 < /a7 < py/oy and
§//as = ¥~ 1(8). This completes the proof. 0

5. Stopping rule
Note that
eo = ||z} o — zol| = |[F'(wo) " (K"K + o) T'K*(y° — KF(x0))|
= || F'(wo) " (K"K + al) ' K*(y* —y +y — KF(x0))|
< Bo(I(K* K +al) "' K*(y* — )|
+[(K*K + al) " K*K(F(2) = F(x0))|)
< Bolw+d/Va),
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so if

w+ 5.1

o b min { ;}
va 2% " 2foro )’
then 2ep < 26p(w +d/y/a) < r, and

Y0 = eofoko < 1/4.

Again since o; = p*6%, 6/ /o, = p~F; the condition (5.1) with o = «ay, takes the
form

1 1 .
W+ — < —— min

<3 {7‘, ﬁ} (5.2)

Note that if we assume that 20yxor < 1. Then condition (5.2) takes the form
w+1/pk < r/(26). So if we assume

1 r
r<206(1+w), —Ftw< —
oo 260

then ;1 > 1 and (3.2) and (3.3) hold. The above discussion leads to the following

theorem.

Theorem 5.1. Assume that pn > 20y/(r — 2Bow), 2w < r < min{26(1 + w),
1/(2Boko)}. Let ag = 8% o = p*8® for j = 1,2,...,N and k := max {i:
125, = 28, |l < 4p=7, j=0,1,2,...,i}. Then

4
IP@) = 23,0 < (24 -7 Jw ™' 0)

where {(t) = t\/o=1(t) for 0 < t < || K| Further vy := Brexro < 1/4 and if

21
T 0 <7}’

:= min :
Nk 1 {n on /L

then
18 — 20, 0l = O™ (5)).
Algorithm: Note that for 7,5 € {0,1,2,...,n}
120, — 20,1l = (aj — i) (K*K 4 a; I) " (K*K + o, 1) 7 K™ (y° — K F()).

Therefore the adaptive algorithm associated with the choice of the parameter specified
in the above theorem is as follows.
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begin
1=0
repeat
i1=1i+1
solve for w;: (K*K+ a;l)w; = K*(y° — KF(x0))
j=-1
repeat
j=j+1
solve for z;: (K*K+4a;l)z ;= (0 —a;)w;

until |[jz;;]| <4p™7 and j<i
until [z ;] < 4p™7

k=1-1
m=0
repeat

m=m-+1
. 2771—1 k
until rdg /2™ > 1/p
ne =m
for =1 to ng
solve for wu._j: F'(J;?_l,%)ul_l = F(m?_]uk) -2
5 . .0
Il,ak T I’l—l,ak — Up—1
end

Remark 5.2. We have considered an iterative regularization method, which is a com-
bination of Newton iterative method with a Tikhonov regularization method, for ob-
taining approximate solution for a nonlinear Hammerstein-type operator equation
AF(x) = vy, with the available data 3° in place of the exact data y. If the opera-
tor K is a positive self-adjoint bounded linear operator on a Hilbert space, then one
may consider Newton Lavrentiev regularization method for obtaining an approximate
solution for K F'(z) = y. It is, assumed that the Fréchet derivative () of the non-
linear operator F’ has a continuous inverse, in a neighborhood of some initial guess g
of the actual solution z. The procedure involves solving the equation

(K*K + ol)ud, = K*(y° — KF(x))
and finding the fixed point of the function
G(e) =« — F'(x) " (F(xz) - F(x0) — u)

in an iterative manner. For choosing the regularization parameter o and the stopping
index for the iteration, we made use of the adaptive method suggested in [21]. Further

we observe that since dy < 1, the quantity nd(z)"_l /2™ in Theorem 4.1 converges rapidly
to zero.
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