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An iterative regularization method for ill-posed
Hammerstein type operator equation

S. George and M. Kunhanandan

Abstract. A combination of Newton’s method and a regularization method has been considered
for obtaining a stable approximate solution for ill-posed Hammerstein type operator equation. By
choosing the regularization parameter according to an adaptive scheme considered by Pereverzev
and Schock (2005) an order optimal error estimate has been obtained. Moreover the method that we
consider gives quadratic convergence compared to the linear convergence obtained by George and
Nair (2008).

Key words. Nonlinear ill-posed equations, Hammerstein type equations, iterative regularization,
adaptive choice.

AMS classification. 65J20, 65J10, 65R10.

1. Introduction

Regularization methods used for obtaining approximate solution of nonlinear ill-posed
operator equation

Ax = y, (1.1)

where A is a nonlinear operator with domain D(A) in a Hilbert space X, and with its
rangeR(A) in a Hilbert space Y , include Tikhonov regularization (see [6, 7, 17, 20, 22,
25]), Landweber iteration [15], iteratively regularized Gauss–Newton method [1] and
Marti’s method [16]. Here the equation (1.1) is ill-posed in the sense that the solution
of (1.1) does not depend continuously on the data y.

The optimality of these methods are usually obtained under a number of restrictive
conditions on the operator A (see for example assumptions (10)–(14) and (93)–(98)
in [23]). For the special case where A is a Hammerstein type operator, George [10,
11] and George and Nair [14] studied a new iterative regularization method and had
obtained optimality under weaker conditions on A (that are more easy to verify in
concrete problems).

Recall that a Hammerstein type operator is an operator of the form A = KF, where
F : D(F ) ⊂ X → Z is nonlinear and K : Z → Y is a bounded linear operator where
we take X,Y, Z to be Hilbert spaces.

So we consider an equation of form

KF (x) = y. (1.2)
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832 S. George and M. Kunhanandan

In [14] George and Nair, studied a modified form of NLR method for obtaining
approximations for a solution x̂ ∈ D(F ) of (1.2), which satisfies

‖F (x̂)− F (x0)‖ = min {‖F (x)− F (x0)‖ : KF (x) = y, x ∈ D(F )}. (1.3)

We assume throughout that the solution x̂ satisfies (1.3) and that yδ ∈ Y are the avail-
able noisy data with

‖y − yδ‖ ≤ δ. (1.4)

The method considered in [14] gives only linear convergence. This paper is an
attempt to obtain quadratic convergence.

Recall that a sequence (xn) is X with limxn = x∗ is said to be convergent of order
p > 1, if there exist positive reals β, γ, such that for all n ∈ N

‖xn − x∗‖ ≤ β e−γp
n

. (1.5)

If the sequence (xn) has the property that

‖xn − x∗‖ ≤ βqn, 0 < q < 1,

then (xn) is said to be linearly convergent. For an extensive discussion of convergence
rate see Kelley [18].

Organization of this paper is as follows. In Section 2, we introduce the iterated reg-
ularization method. In Section 3 we give error analysis and in section 4 we derive error
bounds under general source conditions by choosing the regularization parameter by an
a priori manner as well as by an adaptive scheme proposed by Pereverzev and Schock
in [21]. In Section 5 we consider the stopping rule and the algorithm for implementing
the iterated regularization method.

2. Iterated regularization method

Assume that the function F in (1.2) satisfies the following:
1. F possesses a uniformly bounded Fréchet derivative F ′(·) in a ball Br(x0) of

radius r > 0 around x0 ∈ X , where x0 is an initial approximation for a solution x̂ of
(1.2).

2. There exists a constant κ0 such that

‖F ′(x)− F ′(y)‖ ≤ κ0‖x− y‖, ∀x, y ∈ Br(x0). (2.1)

3. F ′(x)−1 exists and is a bounded operator for all x ∈ Br(x0).
Consider e.g., (cf. [23]) the nonlinear Hammerstein operator equation

(KFx)(t) =
∫ 1

0
k(s, t)h(s, x(s))x(s) ds

with k continuous and h is differentiable with respect to the second variable. Here
F : D(F ) = H1(]0, 1[)→ L2(]0, 1[) is given by

F (x)(s) = h(s, x(s)), s ∈ [0, 1],
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An iterative regularization method 833

and K : L2(]0, 1[)→ L2(]0, 1[) is given by

Ku(t) =
∫ 1

0
k(s, t)u(s) ds, t ∈ [0, 1].

Then F is Fréchet differentiable and we have

[F ′(x)]u(t) = ∂2h(t, x(t))u(t), t ∈ [0, 1].

Assume that N : H1(]0, 1[)→ H1(]0, 1[) defined by (Nx)(t) := ∂2h(t, x(t)) is locally
Lipschitz continuous, i.e., for all bounded subsets U ⊆ H1 there exists κ0 := κ0(U)
such that

‖∂2h(·, x(·))− ∂2h(·, y(·))‖H1 ≤ κ0‖x− y‖ (2.2)

for all x, y ∈ H1. Further if we assume that there exists κ1 such that

∂2h(t, x0(t)) ≥ κ1 t ∈ [0, 1], (2.3)

then by (2.2) and (2.3), there exists a neighborhood U(x0) of x0 in H1 such that

∂2h(t, x(t)) ≥ κ1/2

for all t ∈ [0, 1] and for all x ∈ U(x0). So F ′(x)−1 exists and is a bounded operator for
all x ∈ U(x0).

Observe that (cf. [14]) equation (1.2) is equivalent to

K[F (x)− F (x0)] = y −KF (x0) (2.4)

for a given x0, so that the solution x of (1.2) is obtained by first solving

Kz = y −KF (x0) (2.5)

for z and then solving the nonlinear equation

F (x) = z + F (x0). (2.6)

For fixed α > 0, δ > 0 we consider the regularized solution of (2.5) with yδ in place
of y as

zδα = (K + αI)−1(yδ −KF (x0)) + F (x0) (2.7)

if the operator K in (2.5) is positive self adjoint and Z = Y , otherwise we consider

zδα = (K∗K + αI)−1K∗(yδ −KF (x0)) + F (x0). (2.8)

Note that (2.7) is the simplified or Lavrentiev regularization of equation (2.5) and (2.8)
is the Tikhonov regularization of (2.5).

Now for obtaining approximate solutions for the equation (1.2), for n ∈ N we con-
sider xδn,α, defined iteratively as

xδn+1,α = xδn,α − F ′(xδn,α)−1(F (xδn,α)− zδα), (2.9)

with xδ0,α = x0.
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834 S. George and M. Kunhanandan

Note that the iteration (2.9) is the Newton’s method for the nonlinear problem

F (x)− zδα = 0.

We shall make use of the adaptive parameter selection procedure suggested by
Pereverzev and Schock [21] for choosing the regularization parameter α, depending
on the inexact data yδ and the error δ satisfying (1.4).

We shall need the following lemma which can be found in [14].

Lemma 2.1. Let 0 < ρ < r and x, u ∈ Bρ(x0). Then

‖F ′(x0)(x− x0)− [F (x)− F (x0)]‖ ≤ κ0‖x− x0‖2/2,

and
‖F ′(x0)(x− u)− [F (x)− F (u)]‖ ≤ κ0ρ‖x− u‖.

3. Error analysis

For investigating the convergence of the iterate (xδn,α) defined in (2.9) to an element
xδα ∈ Br(x0) we introduce the following notations: Let for n = 1, 2, 3, . . . ,

βn := ‖F ′(xδn,α)−1‖, en := ‖xδn+1,α − xδn,α‖,

γn := κ0βnen, dn := 3γn(1− γn)−1,

ω := ‖F (x̂)− F (x0)‖.

(3.1)

Further we assume that
γ0 := κ0e0β0 < 1/4 (3.2)

and
η := 2e0 < r. (3.3)

Theorem 3.1. Suppose that (2.1), (3.2) and (3.3) hold. Then xδn,α defined in (2.9)
belongs to Bη(x0) and is a Cauchy sequence with limn→∞ xδn,α = xδα ∈ Bη(x0) ⊂
Br(x0). Further we have the following:

‖xδn,α − xδα‖ ≤ ηd2n−1

0 /2n ≤ β e−γ2n , (3.4)

where β = η/d0 and γ = − log d0.

Proof. First we shall prove that

‖xδn+1,α − xδn,α‖ ≤ (3/2)βnκ0‖xδn,α − xδn−1,α‖2, (3.5)

and then by induction we prove xδn,α ∈ Bη(x0).
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An iterative regularization method 835

Let G(x) = x− F ′(x)−1[F (x)− zδα]. Then

G(x)−G(y) = x− y − F ′(x)−1[F (x)− zδα] + F ′(y)−1[F (y)− zδα]

= x− y + [F ′(x)−1 − F ′(y)−1]zδα − F ′(x)−1F (x) + F ′(y)−1F (y)

= x− y + [F ′(x)−1 − F ′(y)−1](zδα − F (y))

− F ′(x)−1[F (x)− F (y)]

= F ′(x)−1[F ′(x)(x− y)− (F (x)− F (y))]

+ F ′(x)−1[F ′(y)− F ′(x)]F ′(y)−1(zδα − F (y))

= F ′(x)−1[F ′(x)(x− y)− (F (x)− F (y))]

+ F ′(x)−1[F ′(y)− F ′(x)](G(y)− y). (3.6)

Now observe that G(xδn,α) = xδn+1,α, so by putting x = xδn,α and y = xδn−1,α in (3.6),
we obtain

xδn+1,α − xδn,α = F ′(xδn,α)−1[F ′(xδn,α)(xδn,α − xδn−1,α)− (F (xδn,α)− F (xδn−1,α))]

+ F ′(xδn,α)−1[F ′(xδn−1,α)− F ′(xδn,α)](xδn,α − xδn−1,α). (3.7)

Thus by Lemma 2.1 and (2.1),

‖xδn+1,α − xδn,α‖ ≤ βnκ0‖xδn,α − xδn−1,α‖2/2 + βnκ0‖xδn,α − xδn−1,α‖2. (3.8)

This proves (3.5). Again since

F ′(xδn,α) = F ′(xδn−1,α) + F ′(xδn,α)− F ′(xδn−1,α)

= F ′(xδn−1,α)[I + F ′(xδn−1,α)−1(F ′(xδn,α)− F ′(xδn−1,α))], (3.9)

F ′(xδn,α)−1 = [I + F ′(xδn−1,α)−1(F ′(xδn,α)− F ′(xδn−1,α))]−1F ′(xδn−1,α)−1. (3.10)

So if

‖F ′(xδn−1,α)−1(F ′(xδn,α)− F ′(xδn−1,α))‖ ≤ βn−1κ0en−1 = γn−1 < 1,

then
βn ≤ βn−1(1− γn−1)−1 (3.11)

and by (3.5)

en ≤ 3κ0βn−1(1− γn−1)−1e2
n−1/2 (3.12)

= 3γn−1(1− γn−1)−1en−1/2 (3.13)

= dn−1en−1/2. (3.14)
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836 S. George and M. Kunhanandan

Again by (3.11) and (3.13),

γn = κ0enβn ≤ (3/2)κ0γn−1(1− γn−1)−1en−1 · βn−1(1− γn−1)−1

= (3/2)γ2
n−1(1− γn−1)−2. (3.15)

The above relation together with γ0 = κ0e0β0 < 1/4 implies γn < 1/4. Consequently
by (3.13),

en < en−1/2, (3.16)

for all n ≥ 1. So en ≤ 2−ne0, and hence

‖xδn+1,α − x0‖ ≤
n∑
j=0

‖xδj+1,α − xδj,α‖ ≤
n∑
j=0

2−je0 ≤ 2e0 < r.

Thus (xδn,α) is well defined and is a Cauchy sequence with xδα = limn→∞ xδn,α ∈
Bη(x0) ⊂ Br(x0). So from (2.9), it follows that F (xδα) = zδα.

Further note that since γn ≤ 1/4, and by (3.15) we have

dn = 3γn(1− γn)−1 < 4γn < 4 · (3/2)γ2
n−1(1− γn−1)−2 < d2

n−1.

Hence
dn ≤ d2n

0 , (3.17)

consequently, by (3.14), (3.16) and (3.17)

en ≤ dn−1en−1/2 ≤ 2−nd2n−1

0 e0.

Therefore

‖xδn,α − xδα‖ = lim
i
‖xδn,α − xδn+i,α‖ ≤

∞∑
j=n

ej

≤
∞∑
j=n

2−jd2j−1

0 e0 ≤ 2 · 2−nd2n−1

0 e0 =
2e0d

2n−1

0
2n

(3.18)

≤
ηd2n−1

0
2n

=
η

d02n
e−γ2n ≤ η

d0
e−γ2n = β e−γ2n .

This completes the proof. 2

Remark 3.2. Note that γ > 0 because γ0 < 1/4 =⇒ d0 < 1. So by (1.5), sequence
(xδn,α) converges quadratically to xδα.

Theorem 3.3. Suppose that (2.1), (3.2) and (3.3) hold. If, in addition, ‖x0− x̂‖ ≤ η <
r < 1/(β0κ0), then

‖x̂− xδα‖ ≤
β0

1− β0κ0r
‖F (x̂)− zδα‖.
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An iterative regularization method 837

Proof. Observe that

‖x̂− xδα‖ = ‖x̂− xδα + F ′(x0)−1[F (xδα)− F (x̂) + F (x̂)− zδα]‖

≤ ‖F ′(x0)−1[F ′(x0)(x̂− xδα)− (F (x̂)− F (xδα))]‖

+ ‖F ′(x0)−1[F (x̂)− zδα]‖

≤ β0κ0r‖x̂− xδα‖+ β0‖F (x̂)− zδα‖.

Thus
(1− β0κ0r)‖x̂− xδα‖ ≤ β0‖F (x̂)− zδα‖.

This completes the proof. 2

Remark 3.4. If zδα is as in (2.8) and if

‖F (x0)− F (x̂)‖+
δ√
α
<

r

2β0
<

1
2β2

0κ0

then
‖x0 − x̂‖ ≤ η < r <

1
β0κ0

holds (see Section 5).

The following theorem is a consequence of Theorem 3.1 and Theorem 3.3.

Theorem 3.5. Suppose that (2.1), (3.2) and (3.3) hold. If in addition β0κ0r < 1, then

‖x̂− xδn,α‖ ≤
β0

1− β0κ0r
‖F (x̂)− zδα‖+

ηd2n−1

0
2n

.

Remark 3.6. Hereafter we consider zδα as the Tikhonov regularization of (2.5) given
in (2.8). All results in the forthcoming sections are valid for the simplified regulariza-
tion of (2.5).

In view of the estimate in Theorem 3.5, the next task is to find an estimate
‖F (x̂)− zδα‖. For this, let us introduce the notation

zα := F (x0) + (K∗K + αI)−1K∗(y −KF (x0)).

We may observe that

‖F (x̂)− zδα‖ ≤ ‖F (x̂)− zα‖+ ‖zα − zδα‖ ≤ ‖F (x̂)− zα‖+ δ/
√
α, (3.19)

and

F (x̂)− zα = F (x̂)− F (x0)− (K∗K + αI)−1K∗K[F (x̂)− F (x0)]

= [I − (K∗K + αI)−1K∗K][F (x̂)− F (x0)]

= α(K∗K + αI)−1[F (x̂)− F (x0)]. (3.20)
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838 S. George and M. Kunhanandan

Note that for u ∈ R(K∗K) with u = K∗Kz for some z ∈ Z,

‖α(K∗K + αI)−1u‖ = ‖α(K∗K + αI)−1K∗Kz‖ ≤ α‖z‖ → 0

as α → 0. Now since ‖α(K∗K + αI)−1‖ ≤ 1 for all α > 0, it follows that for every
u ∈ R(K∗K), we have ‖α(K∗K + αI)−1u‖ → 0 as α → 0. Thus we achieve the
following theorem.

Theorem 3.7. If F (x̂)− F (x0) ∈ R(K∗K), then ‖F (x̂)− zα‖ → 0 as α→ 0.

4. Error bounds under source conditions

In view of the above theorem, we assume that

‖F (x̂)− zα‖ ≤ ϕ(α) (4.1)

for some positive monotonic increasing function ϕ defined on (0, ‖K‖2] such that

lim
λ→0

ϕ(λ) = 0.

Suppose ϕ is a source function in the sense that x̂ satisfies a source condition of the
form

F (x̂)− F (x0) = ϕ(K∗K)w, ‖w‖ ≤ 1,

such that

sup
0<λ<‖K‖2

αϕ(λ)
λ+ α

≤ ϕ(α), (4.2)

then the assumption (4.1) is satisfied. Note that if F (x̂) − F (x0) ∈ R((K∗K)ν), for
some ν with, 0 < ν ≤ 1, then by (3.20)

‖F (x̂)− zα‖ ≤ ‖α(K∗K + αI)−1(K∗K)νω‖

≤ sup
0<λ≤‖K‖2

αλν

λ+ α
‖ω‖ ≤ αν‖ω‖.

Thus in this case ϕ(λ) = λν/‖ω‖ satisfies the assumption (4.1). Therefore by (3.19)
and by the assumption (4.1), we have

‖F (x̂)− zδα‖ ≤ ϕ(α) + δ/
√
α. (4.3)

So, we have the following theorem.

Theorem 4.1. Under the assumptions of Theorem 3.5 and (4.3),

‖x̂− xδn,α‖ ≤
β0

1− β0κ0r

(
ϕ(α) +

δ√
α

)
+
ηd2n−1

0
2n

.
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4.1. A priori choice of the parameter

Note that the estimate ϕ(α) + δ/
√
α in (4.2) attains minimum for the choice α := αδ

which satisfies ϕ(αδ) = δ/
√
αδ. Let ψ(λ) := λ

√
ϕ−1(λ), 0 < λ ≤ ‖K‖2. Then we

have δ =
√
αδϕ(αδ) = ψ(ϕ(αδ)), and

αδ = ϕ−1(ψ−1(δ)). (4.4)

So the relation (4.3) leads to

‖F (x̂)− zδα‖ ≤ 2ψ−1(δ).

Theorem 4.1 and the above observation leads to the following.

Theorem 4.2. Let ψ(λ) := λ
√
ϕ−1(λ), 0 < λ ≤ ‖K‖2, and the assumptions of Theo-

rem 3.5 and 4.1 be satisfied. For δ > 0, let αδ = ϕ−1(ψ−1(δ)). If

nδ := min {n : rd2n−1

0 /2n < δ/
√
αδ},

then
‖x̂− xδαδ,nδ‖ = O(ψ−1(δ)).

4.2. An adaptive choice of the parameter

The error estimate in the above Theorem has optimal order with respect to δ. Unfortu-
nately, an a priori parameter choice (4.4) cannot be used in practice since the smooth-
ness properties of the unknown solution x̂ reflected in the function ϕ are generally
unknown. There exist many parameter choice strategies in the literature, for example
see [2, 8, 9, 12, 13, 24, 26].

In [21], Pereverzev and Schock considered an adaptive selection of the parameter
which does not involve even the regularization method in an explicit manner. In this
method the regularization parameter αi are selected from some finite set {αi : 0 <
α0 < α1 < · · · < αN} and the corresponding regularized solution, say uδαi are studied
on-line. Later George and Nair [14] considered the adaptive selection of the parameter
for choosing the regularization parameter in Newton–Lavrentiev regularization method
for solving Hammerstein-type operator equation. In this paper also, we consider the
adaptive method for selecting the parameter α in xδα,n. Rest of this section is essentially
a reformulation of the adaptive method considered in [21] in a special context.

Let i ∈ {0, 1, 2, . . . , N} and αi = µ2iα0 where µ > 1 and α0 = δ2. Let

l := max {i : ϕ(αi) ≤ δ/
√
αi} (4.5)

and
k := max {i : ‖zδαi − z

δ
αj‖ ≤ 4δ/√αj , j = 0, 1, 2, . . . , i}. (4.6)

The proof of the next theorem is analogous to the proof of Theorem 1.2 in [21], but for
the sake of completeness, we supply its proof as well.
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840 S. George and M. Kunhanandan

Theorem 4.3. Let l be as in (4.5), k be as in (4.6) and zδαk be as in (2.8) with α = αk.
Then l ≤ k and

‖F (x̂)− zδαk‖ ≤
(

2 +
4µ
µ− 1

)
µψ−1(δ).

Proof. Note that, to prove l ≤ k, it is enough to prove that, for i = 1, 2, . . . , N

ϕ(αi) ≤
δ
√
αi

=⇒ ‖zδαi − z
δ
αj‖ ≤

4δ
√
αj
, ∀j = 0, 1, 2, . . . , i.

For j ≤ i,

‖zδαi − z
δ
αj‖ ≤ ‖z

δ
αi − F (x̂)‖+ ‖F (x̂)− zδαj‖

≤ ϕ(αi) +
δ
√
αi

+ ϕ(αj) +
δ
√
αj
≤ 2δ
√
αi

+
2δ
√
αj
≤ 4δ
√
αj
.

This proves the relation l ≤ k. Now since √αl+m = µm
√
αl, by using triangle in-

equality successively, we obtain

‖F (x̂)− zδαk‖ ≤ ‖F (x̂)− zδαl‖+
k∑

j=l+1

4δ
√
αj−1

≤ ‖F (x̂)− zδαl‖+
k−l−1∑
m=0

4δ
√
αlµm

≤ ‖F (x̂)− zδαl‖+
( µ

µ− 1

) 4δ
√
αl
.

Therefore by (4.2) and (4.5) we have

‖F (x̂)− zδαk‖ ≤ ϕ(αl) +
δ
√
αl

+
( µ

µ− 1

) 4δ
√
αl
≤
(

2 +
4µ
µ− 1

)
µψ−1(δ).

The last step follows from the inequality
√
αδ ≤ √

αl+1 ≤ µ
√
αl and

δ/
√
αδ = ψ−1(δ). This completes the proof. 2

5. Stopping rule

Note that

e0 = ‖xδ1,α − x0‖ = ‖F ′(x0)−1(K∗K + αI)−1K∗(yδ −KF (x0))‖

= ‖F ′(x0)−1(K∗K + αI)−1K∗(yδ − y + y −KF (x0))‖

≤ β0(‖(K∗K + αI)−1K∗(yδ − y)‖

+ ‖(K∗K + αI)−1K∗K(F (x̂)− F (x0))‖)

≤ β0(ω + δ/
√
α ),
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An iterative regularization method 841

so if

ω +
δ√
α
<

1
2β0

min
{
r,

1
2β0κ0

}
, (5.1)

then 2e0 ≤ 2β0(ω + δ/
√
α ) < r, and

γ0 = e0β0κ0 < 1/4.

Again since αj = µ2jδ2, δ/
√
αk = µ−k; the condition (5.1) with α = αk takes the

form

ω +
1
µk

<
1

2β0
min

{
r,

1
2β0κ0

}
. (5.2)

Note that if we assume that 2β0κ0r < 1. Then condition (5.2) takes the form
ω + 1/µk < r/(2β0). So if we assume

r < 2β0(1 + ω),
1
µ

+ ω <
r

2β0

then µ > 1 and (3.2) and (3.3) hold. The above discussion leads to the following
theorem.

Theorem 5.1. Assume that µ > 2β0/(r − 2β0ω), 2β0ω < r < min {2β0(1 + ω),
1/(2β0κ0)}. Let α0 = δ2, αj = µ2jδ2 for j = 1, 2, . . . , N and k := max {i:
‖zδαi − z

δ
αj‖ ≤ 4µ−j , j = 0, 1, 2, . . . , i}. Then

‖F (x̂)− zδαk‖ ≤
(

2 +
4µ
µ− 1

)
µψ−1(δ)

where ψ(t) = t
√
ϕ−1(t) for 0 < t < ‖K‖2. Further γk := βkekκ0 < 1/4 and if

nk := min
{
n :

rd2n−1

0
2n

<
1
µk

}
,

then

‖x̂− xδnk,αk‖ = O(ψ−1(δ)).

Algorithm: Note that for i, j ∈ {0, 1, 2, . . . , n}

‖zδαi − z
δ
αj‖ = (αj − αi)(K∗K + αjI)−1(K∗K + αiI)−1K∗(yδ −KF (x0)).

Therefore the adaptive algorithm associated with the choice of the parameter specified
in the above theorem is as follows.
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842 S. George and M. Kunhanandan

begin

i = 0
repeat

i = i+ 1
solve for wi: (K∗K + αiI)wi = K∗(yδ −KF (x0))
j = −1
repeat

j = j + 1
solve for zi,j: (K∗K + αjI)zi,j = (αj − αi)wi

until ‖zi,j‖ ≤ 4µ−j and j < i

until ‖zi,j‖ ≤ 4µ−j

k = i− 1
m = 0
repeat

m = m+ 1
until rd2m−1

0 /2m > 1/µk

nk = m

for l = 1 to nk

solve for ul−1: F ′(xδl−1,αk)ul−1 = F (xδl−1,αk)− z
δ
αk

xδl,αk := xδl−1,αk − ul−1

end

Remark 5.2. We have considered an iterative regularization method, which is a com-
bination of Newton iterative method with a Tikhonov regularization method, for ob-
taining approximate solution for a nonlinear Hammerstein-type operator equation
AF (x) = y, with the available data yδ in place of the exact data y. If the opera-
tor K is a positive self-adjoint bounded linear operator on a Hilbert space, then one
may consider Newton Lavrentiev regularization method for obtaining an approximate
solution for KF (x) = y. It is, assumed that the Fréchet derivative F ′(x) of the non-
linear operator F has a continuous inverse, in a neighborhood of some initial guess x0
of the actual solution x̂. The procedure involves solving the equation

(K∗K + αI)uδα = K∗(yδ −KF (x0))

and finding the fixed point of the function

G(x) = x− F ′(x)−1(F (x)− F (x0)− uδα)

in an iterative manner. For choosing the regularization parameter α and the stopping
index for the iteration, we made use of the adaptive method suggested in [21]. Further
we observe that since d0 < 1, the quantity ηd2n−1

0 /2n in Theorem 4.1 converges rapidly
to zero.
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