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Abstract

Analysis of heart rate variation (HRV) has become a popular non-invasive tool for assessing the activities of the autonomic nervous system
(ANS). HRV analysis is based on the concept that fast fluctuations may specifically reflect changes of sympathetic and vagal activity. It shows
that the structure generating the signal is not simply linear, but also involves nonlinear contributions. These signals are essentially non-
stationary; may contain indicators of current disease, or even warnings about impending diseases. The indicators may be present at all times
or may occur at random in the time scale. However, to study and pinpoint abnormalities in voluminous data collected over several hours is
strenuous and time consuming. This paper presents the continuous time wavelet analysis of heart rate variability signal for disease identifica-
tion. Fractal dimension (FD) of heart rate signals are calculated and compared with the wavelet analysis patterns. The FD obtained indicates
more than 90% confidence interval for all the classes studied.
© 2005 Elsevier SAS. All rights reserved.

Keywords: Heart rate; Continuous wavelet transform; Fractal dimension

1. Introduction

Bio-signals are essentially non-stationary signals; they dis-
play a fractal like self-similarity. They may contain indica-
tors of the current disease, or even warnings about impend-
ing diseases. The indicators may be present at all times or
may occur at random in the time scale. However, to (study
and) pinpoint anomalies in voluminous data collected over
several hours is strenuous and time consuming. Therefore,
computer based analytical tools for in-depth study and clas-
sification of data over day long intervals can be very useful in
diagnostics.

The ECG belongs to the above category of bio-signals. It
displays an apparent periodicity (of about 60–80 bpm in a
healthy adult), but is not exactly periodic. The heart rate of a
healthy individual is not a constant even under serene condi-

tions; it keeps on changing throughout the day, which can be
directly monitored from the ECG. Disease and affliction do
influence the heart rate, and therefore, the pattern and the
range of heart rate variability would contain important infor-
mation about the robustness of health, types of diseases etc.
Therefore, classification based on the spread and pattern of
this parameter can provide useful insight about the type and
intensity of the affliction.

Heart rate variation (HRV) is a useful signal for under-
standing the status of the autonomic nervous system (ANS).
HRV refers to the variations in the beat intervals or corre-
spondingly in the instantaneous heart rate (HR). The normal
variability in HR is due to autonomic neural regulation of the
heart and the circulatory system [28]. The balancing action
of the sympathetic nervous system (SNS) and parasympa-
thetic nervous system (PNS) branches of the ANS controls
the HR. Increased SNS or diminished PNS activity results in
cardio-acceleration. Conversely, a low SNS activity or a high
PNS activity causes cardio-deceleration. The degree of vari-
ability in the HR provides information about the functioning
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of the nervous control on the HR and the heart’s ability to
respond.

Past 20 years have witnessed the recognition of the signifi-
cant relationship between ANS and cardiovascular mortality
including sudden death due to cardiac arrest [5,13,14,29,30].
Owing of the significant results obtained in this area a task
force was set up by the Board of European Society of Cardi-
ology and was co-sponsored by the North American Society
of Pacing and Electrophysiology. Numerous numbers of
papers appeared in connection with HRV related cardiologi-
cal issues [2,9,12,15] reiterates the significance of HRV in
assessing the cardiac heath. The interest in the analysis of
heart rate variability (HRV), (that is, the fluctuations of the
heart beating in time,) is not new. Furthermore, much progress
was achieved in this field with the advent of low cost com-
puters with massive computational power, which fueled many
recent advances.

HRV is a non-invasive measurement of cardiovascular
autonomic regulation. Specifically, it is a measurement of the
interaction between sympathetic and parasympathetic activ-
ity in autonomic functioning. There are two main approaches
for analysis: time domain analysis of HRV for standard devia-
tion of normal to normal intervals (SDNN); and frequency
domain analysis for power spectrum density (PSD). The latter
provides high frequency (parasympathetic activity),
low frequency (sympathetic activity) and total power
(sympathetic/parasympathetic balance) values. Spectral analy-
sis is the most popular linear technique used in the analysis
of HRV signals [1,21,35]. Spectral power in the high fre-
quency band (HF: 0.15–0.5 Hz) reflects respiratory sinus
arrhythmia (RSA) and, thus, cardiac vagal activity. Low fre-
quency (LF: 0.04–0.15 Hz) power is related to baroreceptor
control and is mediated by both vagal and sympathetic sys-
tems. Very low frequency (VLF: 0.0033–0.04 Hz) power
appears to be related to thermoregulatory and vascular mecha-
nisms, and renin-angiotensin systems.

The importance of the biological time series analysis,
which exhibits typically complex dynamics, has long been
recognized in the area of nonlinear analysis. Several features
of these approaches have been proposed to detect the hidden
important dynamical properties of the physiological phenom-
enon. As the statistical characteristics of biological signals
often change with time and are typically both highly irregu-
lar and non-stationary in many cases, such analysis is so com-
plicated. The nonlinear dynamical techniques are based on
the concept of chaos and it has been applied to many areas
including the areas of medicine and biology [25–27]. The
theory of chaos has been used to detect some cardiac arrhyth-
mia such as ventricular fibrillation [10]. Efforts have been
made in determining nonlinear parameters like fractal dimen-
sion (FD) for pathological signals and it has been shown that
they are useful indicators of pathologies. Methods based on
chaos theory have been applied in tracking HRV signals and
predicting the onset events such as Ventricular Tachycardia
detecting congestive heart failure situations [4]. A novel
method based on phase space technique to distinguish nor-

mal and abnormal cases has been proposed for cardiovascu-
lar signals [18]. The technique has been extended here to iden-
tify the abnormalities of different types.

Recent studies have also stressed the importance of non-
linear techniques to study HRV in issues related to both health
and disease. The progress made in the field using measures
of chaos has attracted the scientific community to apply these
tools in studying physiological systems, and HRV is no excep-
tion. There have been several methods of estimating invari-
ants from nonlinear dynamical systems being reported in the
literature. Recently, Fell et al. [7]; Radhakrishna et al. [23]
have tried the nonlinear analysis of ECG and HRV signals
respectively. Also, Paul et al. [20] showed that coordinated
mechanical activity in the heart during ventricular fibrillation
may be made visible in the surface ECG using wavelet trans-
form. Dingfei et al. [6] have classified the arrhythmia using
autoregressive modeling. Mohamed et al. [17] have used non-
linear dynamical modeling in ECG arrhythmia detection and
classification. This paper uses the heart rate variability as the
base signal for continuous time wavelet analysis. The emerg-
ing patterns are compared with known types of diseases. FD
of the HRV signal compared with the wavelet transform pat-
terns. FD has unique range for each type of disease.

2. Materials and method

ECG data for the analysis was obtained from MIT-BIH
arrhythmia database [31]. Prior to recording, the ECG sig-
nals were processed to remove noise due to power line inter-
ference, respiration, muscle tremors, spikes etc. The R peaks
of ECG were detected using Tompkins’s algorithm [19]. The
number of dataset chosen for each the eight classes is given
in 0. Each dataset consists of around 10,000 samples and the
sampling frequency of the data is 360 Hz. The details of ECG
data in each class is shown in Table 1. The interval between
two successive QRS complexes is defined as the RR interval
(tR–R) and the heart rate (beats per minute) is given as:

(1)HR = 60 ⁄ t r−r

In this work, an effort is made to characterize and classify
eight different classes with one normal class and seven dif-
ferent cardiac diseases. The HRV signal is extracted from the
ECG signal for each class.

2.1. Wavelet analysis

Conventional Fourier Transform techniques are not suit-
able for analysis of non-stationary signals. The chief limita-

Table 1
ECG data for different cardiac health states

Type NSR PVC CHB SSS Ischemic/dilated AF
Number
of datasets

60 60 20 20 20 35
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tion of Fourier Transform is that it employs complex expo-
nential functions of infinite duration to represent time domain
signals of finite interval. Wavelet analysis, on the other hand,
provides a better insight into both the timing and intensity of
transient events.

A ‘wavelet’ implies a small wave of finite duration and
finite energy, which is correlated with the signal to obtain the
wavelet coefficients [24,32]. The reference wavelet is known
as the mother wavelet, and the coefficients are evaluated for
the entire range of the signal interval by translating (shifting)
the wavelet continually along the time scale. In the next phase,
the wavelet is dilated (scaled) to a different width, and the
process is repeated. Dilation is accompanied by modification
of amplitude to normalize the energy of the wavelet. The
wavelet coefficients are real numbers usually shown by the
intensity of a chosen color, against a two dimensional plane
with y-axis representing the dilation (scaling factor) of the
wavelet, and the x-axis, its translation. In the CWT, the wave-
let coefficients are evaluated for infinitesimally small shifts
of translation as well as scale factors. That is, the intensity of
each pixel in the scalogram represents a wavelet coefficient,
evaluated separately for a specific pair translation and dila-
tion factors. Thus the resulting color pattern provides a visual
indicator of both the size and location of the ‘transient event’
occurring along the time scale [3,33] (Grossman et al., 1990).

For a given wavelet wa,b� t �, the coefficients are evaluated
using Eq. (2):

(2)W(a, b) ≡ �
−∞

∞

f(t)
1

��a�
w*� t − b

a �dt

where w*�t − b

a � = wa ,b
*

� t �; a → scale factor; b → trans-

lation factor.
The scalogram patterns thus obtained also depend on the

wavelet chosen for analysis. Bio-signals usually exhibit self-
similarity patterns in their distribution, and a wavelet which
is akin to its fractal shape would yield the best results in terms
of clarity and distinction of patterns. In the present work, the
analysis is based on the Morlet wavelet shown in Fig. 1. This
wavelet gives good result compared to all the other wavelets.

The Morlet wavelet function is given by:

(3)h(t) = exp� − t2

2
+ jw0t�

where w0 = 5.33.

2.2. Fractal dimension (FD)

The term “fractal” was first introduced by Mandelbrot in
1983 [16]. A fractal is a set of points that when looked at
smaller scales, resembles the whole set. The concept of FD
that refers to a non-integer or fractional dimension originates
from fractal geometry. In traditional geometry, the topologi-
cal or Euclidean dimension of an object is known as the num-
ber of directions each differential of the object occupies in
space. This definition of dimension works well for geometri-
cal objects whose level of detail, complexity or “space-
filling” is the same. However, when considering two fractals
of the same topological dimension, their level of “space-
filling” is different, and that information is not given by the
topological dimension. The FD emerges to provide a mea-
sure of how much space an object occupies between Euclid-
ean dimensions. The FD of a waveform represents a power-
ful tool for transient detection. This feature has been used in
the analysis of ECG and EEG to identify and distinguish spe-
cific states of physiologic function [22,34]. Many algorithms
are available to determine the FD of the waveform. In this
work, algorithms proposed by Higuchi and Katz are imple-
mented for analysis of heart rate signals.

2.2.1. Higuchi’s algorithm
Consider x� 1 �,x� 2 �,...,x� N � the time sequence to be

analyzed. Construct k new time series xm
k as :

xm
k =�x(m), x(m + k), x(m + 2k), ... ... ,

x(m + � N − m

k � k) ,�
for m = 1, 2, ..., k, where m indicates the initial time value,
and k indicates the discrete time interval between points, and
 a  means the integer part of a. For each of the k time series
or curvesxm

k , the length Lm� k � is computed by,

(4)
Lm(k) =

�
i=1

 a 

�x(m + ik) − x(m + (i − 1)k)�(N − 1)

 a  k

where N is the total length of the data sequence x,

� N − 1 �⁄  a k is a normalization factor and a =
N − m

k
. An

average length is computed as the mean of the k lengths Lm

� k � for m = 1,2,...,k . This procedure is repeated for each k
ranging from 1 to kmax, obtaining an average length for eachFig. 1. Morlet wavelet function.

135R. Acharya U. et al. / ITBM-RBM 26 (2005) 133–139



k. In the curve of ln(Lm(k)) versus ln(1/k), the slope of the
least-squares linear best fit is the estimate of the FD
� DHiguchi

� [8].

2.2.2. Katz algorithm
Using Katz’s method [11] the FD of a curve can be defined

as,

(5)DKatz =
log10(L)

log10(d)

where L is the total length of the curve or sum of distances
between successive points, and d is the diameter estimated as
the distance between the first point of the sequence and the
point of the sequence that provides the farthest distance. Math-
ematically, d can be expressed as d = max� ��x� 1 � ,x� i ��� � .

Considering the distance between each point of the
sequence and the first, point i is the one that maximizes the
distance with respect to the first point. The FD compares the
actual number of units that compose a curve with the mini-
mum number of units required to reproduce a pattern of the
same spatial extent. FDs computed in this fashion depend
upon the measurement units used. If the units are different,
then so are the FDs. Katz’s approach solves this problem by
creating a general unit or yardstick: the average step or aver-
age distance between successive points, a. Normalizing the
distances Dis then given by,

(6)DKatz =
log10(L ⁄ a)

log10(d ⁄ a)

3. Surrogate data

The purpose of surrogate data is to test for any nonlinear-
ity in the original data. Nonlinear index FD is computed for
several surrogate data series. Their values are compared with
that assumed by the nonlinear index computed for the origi-
nal index [36]. The demonstration of significant difference in
nonlinear indices between the original and surrogate data are
in keeping with the presence of nonlinear dynamics in the
original data.

Surrogate data have Fourier decomposition with the same
amplitudes as the empirical data decomposition but with ran-
dom phase components. This is obtained using the Chaos Data
Analyzer. Twenty sets of surrogate data are generated for each
of the six classes. FD is obtained for both the original and
surrogate data sets. We found that, the surrogate data FD and
original data FD, are different from each other by more than
50%. This rejects the null hypothesis and hence the original
data contain nonlinear features.

4. Results

The resulting wavelet scalograms, for various types of dis-
ease are shown in Fig. 2–7. And the result of the FD for vari-
ous types of subjects is listed in Table 2.

In the CWT plots shown, white color indicates high value
of (wavelet) coefficient and black corresponds to low value.
As can be seen in the figures, the patterns show continuity in
the patterns indicating a continuous variation of heart rate.
For Normal cases, the CWT pattern appears to be flowery
and regular (Fig. 2). In the Ectopic beat abnormality; there
would be a sudden impulsive jump in the heart rate. This may
be due to a Pre-Ventricular beat in the ECG signal. This is
indicated as a sudden surge of radial white lines in the CWT
plot, and a spike in the phase space plot (Fig. 3). The black
patches indicate the Bradycardia and the rest is normal. In
the Atrial Fibrillation (AF), heart rate signal records highly
erratic variability; this is depicted as sudden changes in color
(Fig. 4). In Complete Heart Block (CHB) cases as the A_V
node fails to send electrical signals rhythmically to the ven-
tricles, the heart rate remains low. The pattern is predomi-
nantly red (low coefficient value) with very little change in
color intensity (Fig. 5). The phase space plot reduces almost

Fig. 2. CWT plot of Normal heart rate.

Fig. 3. CWT plot of heart rate with Ectopic beat.
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to a point, indicating very little change with time. In Sick
Sinus Syndrome-III (SSS-III, Bradycardia–Tachycardia) there
is a continuous variation of heart rate between Bradycardia
and Tachycardia, which shows up by way of alternating
patches of black (Brady) and colored (Tachy) patterns (Fig. 6).
In the case of Ischemic/Dilated cardiomyopathy, the ven-
tricles are unable to pump out blood to the normal degree.
Here the HRV is very small. Correspondingly, the color varia-
tion too is gradual and periodic (Fig. 7).

In the case of CHB, the fractal dimension FD1 =
1.24 ± 0.042 and FD2 = 1.41 ± 0.033 slightly low value, indi-
cating low variation in the heart rate data. In Ischemic/Dilated
cardiomyopathy, the variation between the consecutive heart
rates is low (FD1 = 1.32 ± 0.024 and FD2 = 1.52 ± 0.017).
For SSS-III, the FD is low (FD1 = 1.21 ± 0.021 and
FD2 = 1.36 ± 0.017) indicating the inherent periodicity, for
AF has too much variation in the heart rate data
(FD1 = 1.21 ± 0.036 and FD2 = 1.39 ± 0.011). During Ec-

topic beat variation in the heart rate is high
(FD1 = 1.19 ± 0.043 and FD2 = 1.31 ± 0.019), finally, for the
Normal subjects have variation in their heart rates
(FD1 = 1.36 ± 0.043 and FD2 = 1.58 ± 0.016). For normal
subjects, the FD is high due to the variation being chaotic.
And for CHB and Ischemic/dilated cardiomyopathy, this FD
decreases because the R–R variation is low. And for AF and
SSS, this FD value falls further, because the R–R variation
becomes erratic or periodic respectively.

5. Conclusion

Heart rate variability (HRV) signal can be used as a reli-
able indicator of heart diseases. A CWT scalogram of HRV
signal can provide a visual pattern, which may provide con-
siderable insight into the nature and pattern of the disease.
The scalogram pattern is dependent upon the type of the wave-
let used for analysis; which is not examined in this paper.

Fig. 4. CWT plot of heart rate with AF.

Fig. 5. CWT plot of heart rate with CHB.

Fig. 6. CWT of heart rate with SSS-III.

Fig. 7. CWT plot of heart rate with Ischemic/Dilated cardiomyopathy.
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It can be seen that the fractal dimesions DHiguchi and DKatz

decreases for the various cardiac abnormalities with respect
to the normal subject. This indicates that the irregularity or
randomness of the HRV signal is less for cardiac abnormali-
ties. Thus, FDs behave as a reliable indicator of heart dis-
eases with a confidence of more than 90%.

6. Hardware and software specification

To calculate the heart rate and the FD the program is writ-
ten in MATLAB. The CWT shown in Section 4 are obtained
from wavelet toolkit of MATLAB 6.1 version.

7. Mode of availability

The program is freely available (source code, executables
for Windows/DOS, documentation, ECG files) on request
from the author.
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