Please use this identifier to cite or link to this item:
http://idr.nitk.ac.in/jspui/handle/123456789/16265
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Manjunath R. | |
dc.contributor.author | Prashanth M.H. | |
dc.contributor.author | Narasimhan M.C. | |
dc.contributor.author | Bala Bharathi U.K. | |
dc.date.accessioned | 2021-05-05T10:30:04Z | - |
dc.date.available | 2021-05-05T10:30:04Z | - |
dc.date.issued | 2020 | |
dc.identifier.citation | Indian Concrete Journal Vol. 94 , 12 , p. 17 - 28 | en_US |
dc.identifier.uri | https://doi.org/ | |
dc.identifier.uri | http://idr.nitk.ac.in/jspui/handle/123456789/16265 | - |
dc.description.abstract | The present manuscript discusses the results of a series of tests conducted to study, in detail, the performance of reinforced, alkali activated slag concrete beams in terms of their flexural behavior. The present authors have developed and evaluated the performance of a new class of high-performance, self-compacting, alkali-activated slag concrete (HPAASC) mixes, using three industrial by-products, all from the iron and steel industry. While these HPAASC mixes have higher compressive strengths (around 70-90 MPa), reasonable splitting and flexural strengths along with moduli of elasticity, here, in this investigation, reinforced concrete beams made of these mixes are evaluated for their flexural performances in order to promote their applicability in large-scale infrastructural applications. Twelve under-reinforced concrete beams, were cast and were tested. Their flexural behaviors were experimentally evaluated in terms of loads at first crack, ultimate loads, strain-distributions, their load-deflection characteristics along with ductility values. Results of the present study indicate that, all the reinforced beams made of HPAASC mixes exhibit comparable flexural performances, as compared to that of beams cast with a reference OPC-based concrete mix, making a strong case for the possible application of these HPAASC mixes as structural elements in large-scale infrastructure projects. © 2020, Associated Cement Companies Ltd.. All rights reserved. | en_US |
dc.title | Flexural behavior of reinforced high performance self-compacting alkali activated slag concrete beams | en_US |
dc.type | Article | en_US |
Appears in Collections: | 1. Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.